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Missing Heritability Problem

The mystery of missing heritability: Genetic
interactions create phantom heritability
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Human genetics has been haunted by the mystery of “missing heri-
tability” of common traits. Although studies have discovered >1,200
variants associated with common diseases and traits, these variants
typically appear to explain only a minority of the heritability. The
proportion of heritability explained by a set of variants is the ratlo
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e 80% of the currently missing heritability for Crohn’s disease could be due to

genetic interactions.

(frequency <1%) with large effects (3-9). We will discuss the fre-
quency spectrum of disease-related variants in our second paper in
this series.

Here we explore the possibility that a significant portion of the
missing heritability might not reflect missing variants at all. Thc
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What are Interactions?

Interaction: Effect of one variable depends on the other variables

Example: XOR Signal

Y_{l if X1 X, > 0 Y =0 Y =1

0 otherwise.

P(X; = +1) = 1/2

o Xl 1Y and X2 1Y but (X17X2) ,KY
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The Linear Model View of Interactions

logit P(Y = 1|X) =a+> v X;+ > 0 X, Xy

J i<k
e Problem of Enumeration: O(p?) terms for order 2 interaction.

e Problem of Specification: Why products X; - X;,? Why not g(X;, X;)?
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Prior Art on Detecting Interactions

e Linear model:

o (1) (often) assumes a specific form on the signal and (2) high computation cost.

e The computation cost can be significantly reduced with special assumptions
on the signal/data/model. [Wu et al. 09", Wu et al. 10’; Shah and Meinshausen
14'; Hao and Zhang 17'; Thanei et al. 18']

e Tree method:

o (1) nonparametric and (2) low computation cost (linear in p).
[Loh 02; Strobl et al. 08’; Basu et al. 18]

o Implicit hierarchical assumption on the interaction signals.

e Nonparametric dependence measure:

Mutual information: [Péczos and Schneider 12'; Runge 18]

Kernel based measure: [Gretton et al. O7’, Gretton et al. 08’ Fukumizu et al. 09'].
Distance correlation: [Székely and Rizzo 14’ Fan et al. 15']

Others: [Azadkia and Chatterjee 197].

e Neural network (NN).
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Order 2 XOR: NNets/SVMs Don’t Work in High Dim.
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Order 2 XOR: Trees Assume Hierarchical Signals
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The Algorithm of this Talk: Metric Screening

Classification Error (%)
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The Goals

Goal 1: Nonparametric—agnostic to (complex) form of signals.

Coal 2: Reasonable power to detect signals.

Goal 3: Computation cost is linear in p.

THIS TALK: let’s achieve these goals (when Y is binary).
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Part |

Metric Learning Algorithm
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Idea 1: Nonparametric Two Sample Test

Goal: We want to select signal variables Xg out of all variables X.

Key Observation: Difference between signal Xg and noise variables X ge.

e Assignal, Xg satisfy L(Xs | Y =1) # L(Xs | Y =0).
e Asnoise, Xge satisfy L(Xge |Y =1) = L(Xge | Y =0).

Starting Point: Problem of selecting signals < Problem of two sample test

Holplzpo VS. H1 IIPl #]P)O
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Nonparametric Two Sample Test: P; = Py vs. Py # Py

Distance covariance test (Székely and Rizzo 05): compute the measure

Ep_w([|X — X"[|,]

=E[IX - X', | Y # Y] -E[|X - X'|[, [ Y =Y"].

Ep[[|X=X"]l,] Ew [| X = X"1],]

Ep[l|X — X[l > Ew (|| X — X7[|,]
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Nonparametric Two Sample Test: P; = Py vs. Py # Py

Distance covariance test (Székely and Rizzo 05): compute the measure

Ep_w([|X — X"[|,]

=E[IX - X', | Y # Y] -E[|X - X'|[, [ Y =Y"].

Ep[[|X=X"]l,] Ew [| X = X"1],]

Ep-w[l|X — X'[|,] >0 Ep-wl[|X — X'|[,] =0
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Nonparametric Two Sample Test (General Form)

Nonparametric two sample test (general form): compute dependence measure

D(Bo, 1) = Ep_w [ F(1X — X|[2)] .

e Distance covariance test: f(z) = v/x and ¢ = 2

Ep—w [ X — X'||,].

e MMD test with RBF kernel: f(z) = — exp(—x) and ¢ = 2

~Es-w [exp(- X - X'|I3)]
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Nonparametric Two Sample Test (General Form)

Nonparametric two sample test (general form): compute dependence measure

D(Po,B1) = Esw [£(I1X — X'[11)]

Theorem (Liu and R. 20°)
Let g € {1,2}. Then D(Py,Py) is a valid dependence measure if and only if

[ is strictly complete monotone, i.e., (—1)*~1f®)(z) > 0 forall k > 1.

Definition (Valid Dependence Measure)

@ D(Py,PPy) > 0 forall Py, Py.
@ D(Py,P;) =0ifand only if Py = P;.

Proof: The proof follows classical arguments by Bernstein and Schoenberg.
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Back to Feature Selection

Goal: We want to select signal variables Xg out of all variables X.

Key: L(Xg|Y =1)#L(Xs|Y =0).
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Back to Feature Selection

Goal: We want to select signal variables Xg out of all variables X.

Key: L(Xg|Y =1)#L(Xs|Y =0).

A First Idea (Song et al. 12):
Find the subset T C {1,2,...,p} that maximizes the dependence measure:

mas Epow [£(1Xr - X7[)]

A Second Idea (this talk):

Find the support of 5 that maximizes the parameterized dependence measure:

mﬁax Ep_w [f(”X - X/“Zﬁ)}

where || X — X'|[7 ;=" B X; — X}|.
J

Good ideas?
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Perhaps a Big Surprise
Maximize Dependence Measure

max Epow [£(1Xr = X7[)] or max Esw [£(1X - X[} )]

Inconsistency Result (Liu and R. 20")

' Assume

® You have the power to find the global maximizer.

e You may choose whatever f, ¢ you want.

There exists a distribution I’ such that if (X,Y) ~ P
then the solution S can't find all the signal variables, i.e.,

L(Y|X) # L(Y|Xg).
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Perhaps a Big Surprise
Maximize Dependence Measure

mas Epow [£(IX7 - X77)] or max Epow [F(1X - Xl )]

Inconsistency Result (Liu and R. 20")

' Assume

® You have the power to find the global maximizer.

e You may choose whatever f, ¢ you want.

There exists a distribution I’ such that if (X,Y) ~ P
then the solution S can't find all the signal variables, i.e.,

L(Y|X) # L(Y|Xg).

Simply maximizing dependence measure is WRONC!
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How to fix it? First Identify the Problem.

Focus on the continuous version:
max F(8) = En-w [£(I1X = X'l 5)].
= supp(B) where 8 = argmax F'(3).

The Masking Phenomenon

e No false positives: 5 C S.

e May have false negatives (miss signal variables): Y | X¢ # Y | Xg.
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How to fix it? First Identify the Problem.

Focus on the continuous version:

max F(8) = Egw |/(

e
= supp(B) where 8 = argmax F'(3).

The Masking Phenomenon

e No false positives: 5 C S.
e May have false negatives (miss signal variables): Y | X¢ # Y | Xg.

e Summary: There is competition between variables.

A strong signal will mask weaker signals.
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Example: the Landscape of the Objective

F(8) =Epw [F(IX = X'Il2 )] -

Example

Two signal variables X, X5. The signal is additive across X7, Xs.

32“« 32‘\

- Bl ‘B
Equal main effects Effect of X; dominates X5
B> 0,5 > 0. B> 0,8, =0.
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Idea 2: Reweighting—a solution to the masking effect

P—P: P(xay)(X:P(xay)'qv(xay)

w(z,y) =PY =1-y|Xg=xg).

Properties of Reweighting (Liu and R. 20")

o Y 1 Xg under P.

* X |Y, Xgis the same under P as under P.

Statistical Implication

e |t removes the effect of the selected variables.
e |t does not affect the remaining signal.

lterative Reweighting:  F(8;w) = Ep_w [f (||X - X/”Z,ﬁﬂ Ep_w w.rt. P
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Metric Screening Algorithm (Population n = c0)

Initialization: S = 0 and w; = 1.

lteratively do the following two steps:

@ Maximize dependence measure:

max F(Bw).
Update S« Su supp(B). Stop if 3 =0.

@ Reweight the samples: w; =1 —P(Y =y; | Xg =2, ¢).
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Metric Screening Algorithm (Empirical n < 00)

Initialize S = (. Initialize the weight w; = 1.

@ Maximize dependence measure:

max Fo(B;w) — X84

Update S« SuU supp(B). Stop if 3= 0.
@ Reweight the samples: w; =1 -P(Y =y; | X5 =z, ¢).

Important Remarks (useful for later theoretical discussions):

@ Instep 1, we assume it only returns a stationary point since F' is nonconvex.

@ Instep 2, we assume access to P(Y | X 4) for any subset A C S.
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Part Il

Theoretical Analysis
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Definition: Signal and Noise Variables

Definition (Liu and R. 20°)
Let S be the minimal subset such that
* Y|X =Y|Xs (Xg contains all information of X)
e Xg 1 Xge (Xge are irrelevant)
Call X the signal variables, and X g. the noise variables.

Assume the model:

Y =g(X1) = h(X2), (X1,X2) L (X5,...,%p).

Then Xy, 2y are signal, and X3 4. 3 are noise variables.

23/40



Consistency of Metric Screening

Theorem [Liu and R. 20]

The metric screening algorithm (on population) returns S that satisfies

e No false positive: S C S.
e Signal recovery: L(Y|X) = L(Y|Xg).

Assume the model:

Y = g(X1> = h(XQ) (Xl,Xg) J_ (Xg, 000 ,Xp)

Then S = {1,2}, and S can be {1}, {2} or {1,2}.
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From Population n = oo to Empirical n < oco.

Assumptions:
e X;isox-subgaussian for1 < j <p.

e Imperfect classification: for some p > 0

EPY =1-y|Xs)|Y =y] >p fory € {0,1}.

n
logp-

e High dimensional regime: |S| <
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From Population n = oo to Empirical n < oco.

Assumptions:
e X;isox-subgaussian for1 < j <p.

e Imperfect classification: for some p > 0

EPY =1-y|Xs)|Y =y] >p fory € {0,1}.

n
logp-

e High dimensional regime: |S| <

These assumptions are enough to guarantee the concentration results.
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All Stationary Points Exclude Noise

Theorem (Liu and R. 20°)

Consider the metric learning objective: (w(z,y) x P(Y =1 —y | X4))

max Fu(8iw) = B3 w [£ (1X = XIL5)] = A8l

Any stationary point (3 satisfies supp(8) C S w.h.p, if A = Q(\ / 1"%)

Proof Sketch

e The results holds on population (n = o).

9
98,

Any stationary point 5 of Fo(8) must have supp(8) C S.

F(B) <0 forj € S ()

e Uniform convergence transfers the result to finite samples (n < o0).
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All Stationary Points Exclude Noise

Theorem (Liu and R. 20°)

Consider the metric learning objective: (w(z,y) x P(Y =1 —y | X4))

max Fu(8iw) = B3 w [£ (1X = XIL5)] = A8l

Any stationary point (3 satisfies supp(8) C S w.h.p, if A = Q(\ / 1"%)

Proof:
0

98;

Note: f is completely monotone, i.e., (—1)*~1 f(®)(z) > 0 = sois — f’.

a / 149 /
55 T (8) = Enow [/(1X = Xl5) 1% = X317] = A

F(B) <0 forj e S ()

€S
TEE[Bpw 111X = X2, | Xse, Xge] -1, = Xj11] = A <0,

<0 26/40



Statistical Implications

Consequences:

e Metric learning has no false positive: $ C S with high probability!

e If we don't converge to 5 = 0, we'll have found true variables!

Remaining Questions:

e Can we find non-zero stationary points when there are true variables?

e Can we design the (non-convex) objective (landscape) so that it is easier for
gradient ascent to find non-zero stationary points (true variables)?
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Idea 3: Design the Landscape of the Objective

The objective:

mas P (B5w) = B [£ (1% - X117 5)] = A8l

We can make it easier for gradient ascent to find non-zero stationary points.

Claim: ¢ = 1 is better than g = 2.

Reason:

e The gradient itself contains more statistical information when ¢ = 1!

e (Sometimes) 0 not stationary when ¢ = 1 but is stationary when ¢ = 2.
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Why ¢ = 1 is Better than g = 2

e The gradient itself contains more statistical information when ¢ = 1!
e (Sometimes) ¢ = 1 makes 0 not a stationary point!

Example
Assume S = {1} so that X; £ Y. We want 8; > 0.

Start from 5 = 0. Compute the gradient w.r.t 8, at 5 = 0.

%F(ﬁ) ls=o=f'(0) - Ep_w [| X1 — X7|°]

e Key: = 0 can never be a stationary point when g = 1!
Reason : %F(B) lpg=0 « Ep_w [|X1 — X1]] >0.
1
e Key: 8 =0 can be a (bad) stationary point when ¢ = 2!

0 .
Reason : 8—61F(ﬂ) ls=o o Ep_w [|X1 — X{|?] ~o.
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Recovery of Main Effects

Theorem: n ~ log p samples for recovery of main effects
Let S={1,...s}and X7 L X5 L ... L X,|Y. Assume

i logp
12}1£SEB—W [|Xj = X§.|] >A=0Q (E) '

Then S = S w.h.p. Note: Eg_w [|X; — X}|] = 0ifand only if X; LY.

Proof Sketch:

e 3= 0is not a stationary point.

e Conditional independence implies that reweighting does not affect signal of
unselected variables. Rinse and Repeat.
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Recovery of Pure Interaction

Theorem: n ~ p?(~ log p samples for recovery of pure interaction

Let X5 be a pure interaction. Let gradient ascent be initialized at 8; =< %. Assume

Ea-w [ (115 — X4l )] 2 1/ Eo B2,

Then S = S w.h.p. Note: Ep_y, [f(||XS - X’S||1)] = 0ifand only if X5 L Y.

Proof Sketch:

e [ =0is a bad stationary point in pure interaction case (for both ¢ = 1, 2).
e The key is to show the gradient ascent iterates are bounded away from 0 (in
the case ¢ = 1):
ﬂ(k) > - ls for all iteration k € N.
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Recovery of Pure Interaction

Theorem: n ~ p?(~ log p samples for recovery of pure interaction

Let X5 be a pure interaction. Let gradient ascent be initialized at 8; =< %. Assume

Ea-w [ (115 — X4l )] 2 1/ Eo B2,

Then S = S w.h.p. Note: Ep_y, [f(||XS - X’S||1)] = 0ifand only if X5 L Y.

Statistics vs. Computation Tradeoff

e Computation cost: O(p) < Sample complexity: n ~ O(p?(==1)1ogr),
e Computation cost: O(p*) < Sample complexity: n ~ O(p?(s=F)+logp),
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Recovery of Hierarchical Interaction

(X1, X2) is a hierarchical interaction if
e X, is dependent of Y, while X3 is not.
e X, is dependent of Y, when conditional on Xj.

Higher order generalizations are possible.

Definition (Hierarchical Interaction (Liu and R. 20))

The variables in S interacts hierarchically if there exists a nested sequence

0=5C5CS...C8 =S

such that
® Xg,\s,_, isdependent of Y given X, _,.

* Xgs\s, LY |X,foranysubset A C Sy.
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Recovery of Hierarchical Interaction

Theorem: n ~ log p samples for recovery of hierarchical interaction

Let X s be a hierarchical interaction with nested sequence
0=85CS5<CS...2 8 =5

Then, $ = S w.h.p. if the following condition holds:

in Ej°t" log p
ain 05 [ (1 = x5 )] 22 =y 25

Note: E\ k- 1)[f(||XSk X4, [|,)] = 0ifand only if Xs,\5, , LY | Xs,_,

Proof Sketch:

e 3= 0is not a stationary point.
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Toolkit: Fourier Analysis

Understand the gradient of F'(8) near 0
F(8) =Epw [£(1X = X[} )]
e For simplicity, assume f(x) = exp(—z) in below discussion.

A representation: (idea traced back to Bochner, Herglotz...)

F(9) = [ 160(w) = 01()* [ aa(e)io

where ¢, (w) = E[e/“X) | Y = y] is the characteristic function of L(X | Y = y).
e The function gg(w) = %#“’62 is the Cauchy density of scale § when ¢ = 1.
Note: Cauchy is the Fourier transform of Laplace f(|z]) = exp(—|x|).

e The function gg(w) = ﬁﬁ exp(—g—z) is the Gaussian density when ¢ = 2.
Note: Gaussian is the Fourier transform of Gaussian f(|x|?) = exp(—|z|?).
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Toolkit: Fourier Analysis

Understand the gradient of F'(8) near 0 < how fast F/(3) grows away from 0
F(8) = [ loow) — 6160 [Lasles)do
J

Recall gg(w) = cﬁﬁifﬂ? is the Cauchy density (¢ = 1).
Key property: Cauchy density gg(w) is self-bounding w.r.t 3
B

45(w) > = whenever 8 < 3.

qpr(w) — B
An Application: Hence F(8) is also self-bounding when ¢ = 1. In particular,

F@) 2z FQ)-]15

Note F'(0) = 0. This gives a crude bound on the gradient that holds for all type
of signals:
95 F(B) 2 F(1)- T] 85

j#k
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Example: Recovery of Main Effects

X; Y =0~ N(0,0*(1+9;)) forj=1,3.

51 = 0.4 and
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e ¢ =1 (Laplace) does strictly better than ¢ = 2 (Gaussian).
e RF (Random Forest) is the winner, slightly better than MS (Metric screening).
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Recovery of Hierarchical Effects (QDA Model)

+0.25 L, £05
(X1, X5) [V =41 ~N ((im) ’ (iO.S, 1 )) '
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Conclusion:
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e Dcor test and Lasso perform poorly in detecting weak main effect signal.

e MS (Metric screening) is the winner, and it scales better in high dimension.
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Recovery of Ratio Interaction Signal

logit P(Y = 1|X) = :iZ:
1

X1 is the stronger main effect and X5 is the weaker main effect.
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Conclusion:

e MS (Metric screening) is more effective in exploiting interactions than RF.
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Recovery of Pure Interaction

+1 fX;X,>0
-1 ifX1X2<0
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Conclusion:
e MS (Metric screening) is clearly the winner of all.
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Conclusion (Takeaways)

Detecting interactions is an interesting combinatorial problem.

Three Main Ideas:

e |dea 1: Nonparametric two sample test = Maximize dependence measure.
e |dea 2: Inconsistency of naive maximization (masking) = Reweighting.

e |dea 3: Nonconvexity makes it hard to find the global maximum =- Design
the objective landscape (gradient).
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