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Missing Heritability Problem

The mystery of missing heritability: Genetic
interactions create phantom heritability
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Human genetics has been haunted by the mystery of “missing heri-
tability” of common traits. Although studies have discovered>1,200
variants associated with common diseases and traits, these variants
typically appear to explain only a minority of the heritability. The
proportion of heritability explained by a set of variants is the ratio
of (i) the heritability due to these variants (numerator), estimated
directly from their observed effects, to (ii) the total heritability (de-
nominator), inferred indirectly from population data. The prevailing
view has been that the explanation formissing heritability lies in the
numerator—that is, in as-yet undiscovered variants.Whilemany var-
iants surely remain to be found, we show here that a substantial
portion of missing heritability could arise from overestimation of
the denominator, creating “phantom heritability.” Specifically, (i)
estimates of total heritability implicitly assume the trait involves no
genetic interactions (epistasis) among loci; (ii) this assumption is not
justified, because models with interactions are also consistent with
observable data; and (iii) under such models, the total heritability
may be much smaller and thus the proportion of heritability ex-
plained much larger. For example, 80% of the currently missing her-
itability for Crohn’s disease could be due to genetic interactions, if
the disease involves interaction among three pathways. In short,
missing heritability need not directly correspond to missing variants,
because current estimates of total heritability may be significantly
inflated by genetic interactions. Finally, we describe a method for
estimating heritability from isolated populations that is not inflated
by genetic interactions.

genome-wide association studies | statistical genetics

A continuing mystery in human genetics is the so-called missing
heritability of common traits. Genome-wide association

studies (GWAS) have led to the identification of >1,200 loci har-
boring genetic variants associated with >165 common human dis-
eases and traits, revealing previously unknown roles for scores of
biological pathways (1–3). However, early GWAS were puzzling
because they appeared to explain only a small proportion of the
“heritability” of the traits. With larger GWAS, the proportion of
heritability apparently explained has grown (to 20–30% in some
well-studied cases and >50% in a few), but, for most traits, the
majority of the heritability remains unexplained (1).
This is our first in a series of papers exploring the explanations for

missing heritability. Geneticists define the proportion of (narrow-
sense) heritability of a trait explained by a set of known genetic
variants to be the ratio πexplained = h2known/h

2
all, where (i) the nu-

merator h2known is the proportion of the phenotypic variance
explained by the additive effects of known variants and (ii) the
denominator h2all is the proportion of the phenotypic variance at-
tributable to the additive effects of all variants, including those not
yet discovered. The numerator can be calculated directly from the
measured effects of the variants, but the denominator must be
inferred indirectly from population data.
The prevailing view among human geneticists has been that the

explanation for missing heritability lies in the numerator, that is, in
additional variants remaining to be discovered. Much debate has
focused on whether these additional variants are common alleles
(frequency ≥1%) with moderate-to-small effects or rare alleles

(frequency <1%) with large effects (3–9). We will discuss the fre-
quency spectrum of disease-related variants in our second paper in
this series.
Here we explore the possibility that a significant portion of the

missing heritability might not reflect missing variants at all. The
basic idea is easy to state: Current studies use estimators of h2all
that are not consistent (that is, converge to the wrong answer);
they may seriously overestimate the denominator h2all and thus
underestimate πexplained. As a result, even when all variants af-
fecting the trait are discovered, πexplained may fall far short of
100%. We refer to this gap as “phantom heritability.”
Quantitative geneticists have long known that genetic inter-

actions can affect heritability calculations (10). However, human
genetic studies of missing heritability have paid little attention to
the potential impact of genetic interactions. A few authors have
constructed mathematical examples (11, 12), but these abstract
models have not been related to biologically plausible mechanisms,
and the studies have not considered whether the presence of ge-
netic interactions would be readily detected, thereby preventing
geneticists from being fooled by phantom heritability. The pre-
vailing view among human geneticists appears to be that inter-
actions play at most a minor part in explaining missing heritability.
Here we show that simple and plausible models can give rise to

substantial phantom heritability. Biological processes often de-
pend on the rate-limiting value among multiple inputs, such as
the levels of components of a molecular complex required in
stoichiometric ratios, reactants required in a biochemical path-
way, or proteins required for transcription of a gene. We thus
introduce the limiting pathway (LP) model, in which a trait
depends on the rate-limiting value of k inputs, each of which is
a strictly additive trait that depends on a set of variants (that may
be common or rare). When k = 1, the LP model is simply
a standard additive trait. For k > 1, we show that LP(k) traits can
have substantial phantom heritability.
The potential magnitude of phantom heritability can be il-

lustrated by considering Crohn’s disease, for which GWAS have
so far identified 71 risk associated loci (13). Under the usual
assumption that the disease arises from a strictly additive ge-
netic architecture, these loci explain only 21.5% of the esti-
mated heritability. However, if Crohn’s disease instead follows
an LP(3) model, the phantom heritability is 62.8%, thus genetic
interactions could account for 80% of the currently missing
heritability.
To avoid being fooled by phantom heritability, one might hope

to be able to recognize when traits involve genetic interactions, for
example, based on population data (such as phenotypic correla-
tions among close relatives) or genetic data (such as pairwise tests
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• 80% of the currently missing heritability for Crohn’s disease could be due to
genetic interactions.
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What are Interactions?

Interaction: Effect of one variable depends on the other variables

Example: XOR Signal

Y =

{
1 ifX1X2 > 0

0 otherwise.

P(Xj = ±1) = 1/2

• X1 ⊥ Y and X2 ⊥ Y but (X1, X2) 6⊥ Y .
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The Linear Model View of Interactions

logit P(Y = 1|X) = α+
∑
j

γj ·Xj +
∑
j<k

θjk ·Xj ·Xk

• Problem of Enumeration: O(p2) terms for order 2 interaction.

• Problem of Specification: Why products Xj ·Xk? Why not g(Xj , Xk)?
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Prior Art on Detecting Interactions

• Linear model:

(1) (often) assumes a specific form on the signal and (2) high computation cost.

The computation cost can be significantly reduced with special assumptions
on the signal/data/model. [Wu et al. 09’; Wu et al. 10’; Shah and Meinshausen
14’; Hao and Zhang 17’; Thanei et al. 18’]

• Tree method:

(1) nonparametric and (2) low computation cost (linear in p).
[Loh 02’; Strobl et al. 08’; Basu et al. 18’]

Implicit hierarchical assumption on the interaction signals.

• Nonparametric dependence measure:

Mutual information: [Póczos and Schneider 12’; Runge 18’]
Kernel based measure: [Gretton et al. 07’, Gretton et al. 08’, Fukumizu et al. 09’].
Distance correlation: [Székely and Rizzo 14’, Fan et al. 15’]
Others: [Azadkia and Chatterjee 19’].

• Neural network (NN).
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Order 2 XOR: NNets/SVMs Don’t Work in High Dim.
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Order 2 XOR: Trees Assume Hierarchical Signals
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The Algorithm of this Talk: Metric Screening

metric screening
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The Goals

Goal 1: Nonparametric—agnostic to (complex) form of signals.

Goal 2: Reasonable power to detect signals.

Goal 3: Computation cost is linear in p.

THIS TALK: let’s achieve these goals (when Y is binary).
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Part I

Metric Learning Algorithm
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Idea 1: Nonparametric Two Sample Test

Goal: We want to select signal variables XS out of all variables X .

Key Observation: Difference between signal XS and noise variables XSc .

• As signal, XS satisfy L(XS | Y = 1) 6= L(XS | Y = 0).

• As noise, XSc satisfy L(XSc | Y = 1) = L(XSc | Y = 0).

Starting Point: Problem of selecting signals⇔ Problem of two sample test

H0 : P1 = P0 vs. H1 : P1 6= P0.
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Nonparametric Two Sample Test: P1 = P0 vs. P1 6= P0

Distance covariance test (Székely and Rizzo 05): compute the measure

EB−W [‖X −X ′‖2]

:= E[‖X −X ′‖2 | Y 6= Y ′]︸ ︷︷ ︸
EB [‖X−X′‖2]

−E[‖X −X ′‖2 | Y = Y ′]︸ ︷︷ ︸
EW [‖X−X′‖2]

.

EB [‖X −X ′‖2]� EW [‖X −X ′‖2]
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Nonparametric Two Sample Test (General Form)

Nonparametric two sample test (general form): compute dependence measure

D(P0,P1) = EB−W
[
f
(
‖X −X ′‖qq

)]
.

Example

• Distance covariance test: f(x) =
√
x and q = 2

EB−W [‖X −X ′‖2] .

• MMD test with RBF kernel: f(x) = − exp(−x) and q = 2

−EB−W
[
exp(−‖X −X ′‖22)

]
.
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Nonparametric Two Sample Test (General Form)

Nonparametric two sample test (general form): compute dependence measure

D(P0,P1) = EB−W
[
f
(
‖X −X ′‖qq

)]
.

Theorem (Liu and R. 20’)
Let q ∈ {1, 2}. Then D(P0,P1) is a valid dependence measure if and only if

f ′ is strictly complete monotone, i.e., (−1)k−1f (k)(x) > 0 for all k ≥ 1.

Definition (Valid Dependence Measure)
1 D(P0,P1) ≥ 0 for all P0,P1.
2 D(P0,P1) = 0 if and only if P0 = P1.

Proof: The proof follows classical arguments by Bernstein and Schoenberg.
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Back to Feature Selection

Goal: We want to select signal variables XS out of all variables X .

Key: L(XS | Y = 1) 6= L(XS | Y = 0).

A First Idea (Song et al. 12’):

Find the subset T ⊆ {1, 2, . . . , p} that maximizes the dependence measure:

max
T

EB−W
[
f(‖XT −X ′T ‖

q
q)
]
.

A Second Idea (this talk):

Find the support of β that maximizes the parameterized dependence measure:

max
β

EB−W
[
f(‖X −X ′‖qq,β)

]
where ‖X −X ′‖qq,β =

∑
j

βj |Xj −X ′j |q.

Good ideas?
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Perhaps a Big Surprise

Maximize Dependence Measure

max
T

EB−W
[
f(‖XT −X ′T ‖

q
q)
]

or max
β

EB−W
[
f(‖X −X ′‖qq,β)

]
.

Inconsistency Result (Liu and R. 20’)
Assume

• You have the power to find the global maximizer.

• You may choose whatever f , q you want.

There exists a distribution P such that if (X,Y ) ∼ P
then the solution Ŝ can’t find all the signal variables, i.e.,

L(Y |X) 6= L(Y |XŜ).

Simply maximizing dependence measure is WRONG!
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How to fix it? First Identify the Problem.

Focus on the continuous version:

max
β

F (β) = EB−W
[
f(‖X −X ′‖qq,β)

]
.

Ŝ = supp(β̂) where β̂ = argmaxF (β).

The Masking Phenomenon

• No false positives: Ŝ ⊆ S.

• May have false negatives (miss signal variables): Y | XŜ 6= Y | XS .

• Summary: There is competition between variables.

A strong signal will mask weaker signals.
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Example: the Landscape of the Objective

F (β) = EB−W
[
f(‖X −X ′‖qq,β)

]
.

Example

Two signal variables X1, X2. The signal is additive across X1, X2.

𝛽ଶ

𝛽ଵ

Equal main effects

β̂1 > 0, β̂2 > 0.

𝛽ଵ

𝛽ଶ

Effect ofX1 dominates X2

β̂1 > 0, β̂2 = 0.
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Idea 2: Reweighting—a solution to the masking effect

P 7→ P̃ : P̃(x, y) ∝ P(x, y) · w(x, y).

w(x, y) = P(Y = 1− y|XŜ = xŜ).

Properties of Reweighting (Liu and R. 20’)

• Y ⊥ XŜ under P̃.

• XŜc |Y,XŜ is the same under P̃ as under P.

Statistical Implication

• It removes the effect of the selected variables.

• It does not affect the remaining signal.

Iterative Reweighting: F (β;w) = ẼB−W
[
f
(
‖X −X ′‖qq,β

)]
ẼB−W w.r.t. P̃
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Metric Screening Algorithm (Population n =∞)

Initialization: Ŝ = ∅ and wi ≡ 1.

Iteratively do the following two steps:

1 Maximize dependence measure:

max
β≥0

F (β;w).

Update Ŝ ← Ŝ ∪ supp(β̂). Stop if β̂ = 0.

2 Reweight the samples: wi = 1− P(Y = yi | XŜ = xi,Ŝ).
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Metric Screening Algorithm (Empirical n <∞)

Initialize Ŝ = ∅. Initialize the weight wi ≡ 1.

1 Maximize dependence measure:

max
β≥0

Fn(β;w)− λ ‖β‖1.

Update Ŝ ← Ŝ ∪ supp(β̂). Stop if β̂ = 0.

2 Reweight the samples: wi = 1− P(Y = yi | XŜ = xi,Ŝ).

Important Remarks (useful for later theoretical discussions):

1 In step 1, we assume it only returns a stationary point since F is nonconvex.

2 In step 2, we assume access to P(Y | XA) for any subset A ⊆ S.
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Part II

Theoretical Analysis
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Definition: Signal and Noise Variables

Definition (Liu and R. 20’)
Let S be the minimal subset such that

• Y |X = Y |XS (XS contains all information ofX)

• XS ⊥ XSc (XSc are irrelevant)

Call XS the signal variables, and XSc the noise variables.

Example

Assume the model:

Y = g(X1) = h(X2), (X1, X2) ⊥ (X3, . . . , Xp).

Then X{1,2} are signal, and X{3,4,...,p} are noise variables.
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Consistency of Metric Screening

Theorem [Liu and R.’ 20]

The metric screening algorithm (on population) returns Ŝ that satisfies

• No false positive: Ŝ ⊆ S.

• Signal recovery: L(Y |X) = L(Y |XŜ).

Example

Assume the model:

Y = g(X1) = h(X2) (X1, X2) ⊥ (X3, . . . , Xp)

Then S = {1, 2}, and Ŝ can be {1}, {2} or {1, 2}.
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From Population n =∞ to Empirical n <∞.

Assumptions:

• Xj is σX-subgaussian for 1 ≤ j ≤ p.

• Imperfect classification: for some ρ > 0

E[P(Y = 1− y | XS) | Y = y] > ρ for y ∈ {0, 1}.

• High dimensional regime: |S| . n
log p .

These assumptions are enough to guarantee the concentration results.
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All Stationary Points Exclude Noise

Theorem (Liu and R. 20’)
Consider the metric learning objective: (w(x, y) ∝ P(Y = 1− y | XA))

max
β≥0

Fn(β;w) = ÊwB−W
[
f
(
‖X −X ′‖qq,β

)]
− λ ‖β‖1

Any stationary point β satisfies supp(β) ⊆ S w.h.p, if λ = Ω
(√

log p
n

)
.

Proof Sketch

• The results holds on population (n =∞).

∂

∂βj
F∞(β) < 0 for j ∈ Sc. (∗)

Any stationary point β of F∞(β) must have supp(β) ⊆ S.

• Uniform convergence transfers the result to finite samples (n <∞).
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All Stationary Points Exclude Noise

Theorem (Liu and R. 20’)
Consider the metric learning objective: (w(x, y) ∝ P(Y = 1− y | XA))

max
β≥0

Fn(β;w) = ÊwB−W
[
f
(
‖X −X ′‖qq,β

)]
− λ ‖β‖1

Any stationary point β satisfies supp(β) ⊆ S w.h.p, if λ = Ω
(√

log p
n

)
.

Proof:
∂

∂βj
F∞(β) < 0 for j ∈ Sc. (∗)

Note: f is completely monotone, i.e., (−1)k−1f (k)(x) > 0⇒ so is −f ′.

∂

∂βj
F∞(β) = EB−W

[
f ′
(
‖X −X ′‖qq,β

)
· |Xj −X ′j |q

]
− λ

j 6∈S
= E

[
EB−W

[
f ′
(
‖X −X ′‖qq,β

)
| XSc , X ′Sc

]
︸ ︷︷ ︸

≤0

·|Xj −X ′j |q
]
− λ < 0.
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Statistical Implications

Consequences:

• Metric learning has no false positive: Ŝ ⊆ S with high probability!

• If we don’t converge to β = 0, we’ll have found true variables!

Remaining Questions:

• Can we find non-zero stationary points when there are true variables?

• Can we design the (non-convex) objective (landscape) so that it is easier for
gradient ascent to find non-zero stationary points (true variables)?
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Idea 3: Design the Landscape of the Objective

The objective:

max
β≥0

Fn(β;w) = ÊwB−W
[
f
(
‖X −X ′‖qq,β

)]
− λ ‖β‖1

We can make it easier for gradient ascent to find non-zero stationary points.

Claim: q = 1 is better than q = 2.

Reason:

• The gradient itself contains more statistical information when q = 1!

• (Sometimes) 0 not stationary when q = 1 but is stationary when q = 2.
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Why q = 1 is Better than q = 2

• The gradient itself contains more statistical information when q = 1!

• (Sometimes) q = 1 makes 0 not a stationary point!

Example

Assume S = {1} so that X1 6⊥ Y . We want β1 > 0.

Start from β = 0. Compute the gradient w.r.t β1 at β = 0.

∂

∂β1
F (β) |β=0= f ′(0) · EB−W [|X1 −X ′1|q]

• Key: β = 0 can never be a stationary point when q = 1!

Reason :
∂

∂β1
F (β) |β=0 ∝ EB−W [|X1 −X ′1|] > 0.

• Key: β = 0 can be a (bad) stationary point when q = 2!

Reason :
∂

∂β1
F (β) |β=0 ∝ EB−W

[
|X1 −X ′1|2

] ?
= 0.
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Recovery of Main Effects

Theorem: n ∼ log p samples for recovery of main effects

Let S = {1, . . . s} and X1 ⊥ X2 ⊥ . . . ⊥ Xs|Y . Assume

min
1≤j≤S

EB−W
[
|Xj −X ′j |

]
& λ = Ω

(√
log p

n

)
.

Then Ŝ = S w.h.p. Note: EB−W
[
|Xj −X ′j |

]
= 0 if and only ifXj ⊥ Y .

Proof Sketch:

• β = 0 is not a stationary point.

• Conditional independence implies that reweighting does not affect signal of
unselected variables. Rinse and Repeat.
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Recovery of Pure Interaction

Theorem: n ∼ p2(s−1) log p samples for recovery of pure interaction

Let XS be a pure interaction. Let gradient ascent be initialized at βj � 1
p . Assume

EB−W
[
f
(
‖XS −X ′S‖1

)]
&

√
p2(s−1) log p

n
.

Then Ŝ = S w.h.p. Note: EB−W
[
f(‖XS −X ′S‖1)

]
= 0 if and only ifXS ⊥ Y .

Proof Sketch:

• β = 0 is a bad stationary point in pure interaction case (for both q = 1, 2).

• The key is to show the gradient ascent iterates are bounded away from 0 (in
the case q = 1):

β
(k)
S &

1

p
1S for all iteration k ∈ N.

To increase statistical power, run multiple times with different initializations.
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Recovery of Pure Interaction

Theorem: n ∼ p2(s−1) log p samples for recovery of pure interaction

Let XS be a pure interaction. Let gradient ascent be initialized at βj � 1
p . Assume

EB−W
[
f
(
‖XS −X ′S‖1

)]
&

√
p2(s−1) log p

n
.

Then Ŝ = S w.h.p. Note: EB−W
[
f(‖XS −X ′S‖1)

]
= 0 if and only ifXS ⊥ Y .

Statistics vs. Computation Tradeoff

• Computation cost: O(p) ⇔ Sample complexity: n ∼ O(p2(s−1) log p).

• Computation cost: O(pk) ⇔ Sample complexity: n ∼ O(p2(s−k)+ log p).

To increase statistical power, run multiple times with different initializations.
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Recovery of Hierarchical Interaction

Example

(X1, X2) is a hierarchical interaction if

• X1 is dependent of Y , while X2 is not.

• X2 is dependent of Y , when conditional on X1.

Higher order generalizations are possible.

Definition (Hierarchical Interaction (Liu and R. 20’))
The variables in S interacts hierarchically if there exists a nested sequence

∅ = S0 ( S1 ( S2 . . . ( Ss = S

such that

• XSk\Sk−1
is dependent of Y given XSk−1

.

• XS\Sk
⊥ Y | XA for any subset A ( Sk.
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Recovery of Hierarchical Interaction

Theorem: n ∼ log p samples for recovery of hierarchical interaction

Let XS be a hierarchical interaction with nested sequence

∅ = S0 ( S1 ( S2 . . . ( Ss = S.

Then, Ŝ = S w.h.p. if the following condition holds:

min
1≤k≤s

E
(wSk−1

)

B−W

[
f
(∥∥XSk

−X ′Sk

∥∥
1

)]
& λ =

√
log p

n

Note: E
(wSk−1

)

B−W

[
f(
∥∥XSk

−X ′Sk

∥∥
1
)
]

= 0 if and only ifXSk\Sk−1
⊥ Y | XSk−1

Proof Sketch:

• β = 0 is not a stationary point.
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Toolkit: Fourier Analysis

Understand the gradient of F (β) near 0

F (β) = EB−W
[
f(‖X −X ′‖qq,β)

]
• For simplicity, assume f(x) = exp(−x) in below discussion.

A representation: (idea traced back to Bochner, Herglotz...)

F (β) =

∫
|φ0(ω)− φ1(ω)|2

∏
j

qβ(ωj)dω.

where φy(ω) = E[ei〈ω,X〉 | Y = y] is the characteristic function of L(X | Y = y).

• The function qβ(ω) = 1
π

βω
ω2+β2 is the Cauchy density of scale β when q = 1.

Note: Cauchy is the Fourier transform of Laplace f(|x|) = exp(−|x|).

• The function qβ(ω) = 1√
2πβ

exp(−ω
2

β2 ) is the Gaussian density when q = 2.

Note: Gaussian is the Fourier transform of Gaussian f(|x|2) = exp(−|x|2).
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Toolkit: Fourier Analysis

Understand the gradient of F (β) near 0⇔ how fast F (β) grows away from 0

F (β) =

∫
|φ0(ω)− φ1(ω)|2

∏
j

qβ(ωj)dω.

Recall qβ(ω) = βω
ω2+β2 is the Cauchy density (q = 1).

Key property: Cauchy density qβ(ω) is self-bounding w.r.t β:

qβ(ω)

qβ′(ω)
≥ β

β′
whenever β ≤ β′.

An Application: Hence F (β) is also self-bounding when q = 1. In particular,

F (β) & F (1) ·
∏
j

βj .

Note F (0) = 0. This gives a crude bound on the gradient that holds for all type
of signals:

∂βk
F (β) & F (1) ·

∏
j 6=k

βj .
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Example: Recovery of Main Effects

Xj | Y = 0 ∼ N(0, σ2(1 + δj)) for j = 1, 3.

δ1 = 0.4 and δ3 = 0.3
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Conclusion:

• q = 1 (Laplace) does strictly better than q = 2 (Gaussian).

• RF (Random Forest) is the winner, slightly better than MS (Metric screening).
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Recovery of Hierarchical Effects (QDA Model)

(X1, X2) | Y = ±1 ∼ N

((
±0.25
±0.1

)
,

(
1, ±0.5
±0.5, 1

))
.
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Conclusion:

• Dcor test and Lasso perform poorly in detecting weak main effect signal.

• MS (Metric screening) is the winner, and it scales better in high dimension.
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Recovery of Ratio Interaction Signal

logit P(Y = 1|X) =
|X2|
|X1|

.

X1 is the stronger main effect and X2 is the weaker main effect.
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Conclusion:

• MS (Metric screening) is more effective in exploiting interactions than RF.
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Recovery of Pure Interaction

Y =

{
+1 ifX1X2 > 0

−1 ifX1X2 < 0
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Conclusion:

• MS (Metric screening) is clearly the winner of all.
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Conclusion (Takeaways)

Detecting interactions is an interesting combinatorial problem.

Three Main Ideas:

• Idea 1: Nonparametric two sample test⇒Maximize dependence measure.

• Idea 2: Inconsistency of naive maximization (masking)⇒ Reweighting.

• Idea 3: Nonconvexity makes it hard to find the global maximum⇒ Design
the objective landscape (gradient).

40 / 40


	Introduction

