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APPENDIX A: A ROADMAP TO THE APPENDIX

The organization of the Appendix is as follows.

1. Section B lists the common notation and assumptions in the Appendix.
2. Section C–Section F prepares the basic materials.

• Section C starts from the very basics—the definition of the signal
and noise variables.

• Section D studies how to choose f in the metric learning objective
so it can perform non-parametric variable selection. It turns out
that the sufficient and necessary condition is that f ′ is strictly
completely monotone.

• Section E shows that the masking phenomenon always exists for
the metric learning objective no matter how carefully you choose
the function f and no matter how well you optimize the (non-
convex) population metric learning objective. The justification is
through a detailed characterization of the population landscape
for two concrete statistical models. The masking phenomenon im-
plies that naive maximization of metric learning objective leads
to inconsistent estimate of the signal variables.

• Section F shows how the ultimate metric learning algorithm lever-
ages the iterative reweighing technique to resolve the inconsis-
tency of the naive maximization of the metric learning objective;
the final output of the ultimate metric learning algorithm includes
the signals and excludes the noise variables.

3. Section G–Section J constitutes the main mathematical tools for the
theoretical study of the metric learning algorithms.

• Section G shows that, on population, the gradient of the objec-
tive with respect to noise variable is always non-positive, and its
magnitude is lower bounded by the value of the objective function
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itself. The implication is that, even without explicit `1 regulariza-
tion, the metric learning objective (assuming having at least one
signal variable) can self-penalize the noise variables.

• Section H studies the general population metric learning objective
where the kernel in the objective can be of `1 and `2 type.

• Section I studies a special class of population objective where the
kernel is of `1 type. Compared with those in Section H, the result
and proof in Section I rely on a special property of the `1 type ker-
nel, that is, its Fourier transform is heavy-tailed (Cauchy density
function). It is important to notice that the same property does
not hold for the `2 type kernel, whose Fourier transform is light-
tailed (Gaussian density). The result in Section I has substantial
consequence on the recovery guarantees of the signal variables in
high dimension (Section N).

• Section J studies the uniform convergence of the empirical ob-
jective and its gradient to the population ones. An important
consequence of these results is that all properties derived on pop-
ulation (Section F—Section I) continue to hold on the empirical
counterparts after taking into account the sampling errors.

4. Section K–Section N presents the proof of the main results of the pa-
per. All these results only assume the optimization procedure reach a
stationary point of the (non-convex) metric learning objective.

• Section K–L shows that in low dimension, even without explicit
regularization, the metric learning algorithm, using either `1 or `2
kernel, recovers the signal and removes the the noise variables.

• Section M shows that in high dimension, with explicit `1 regular-
ization, the metric learning algorithm throw away noise variables.

• Section N shows that in high dimension, the metric learning al-
gorithm that uses `1 type kernel manages to recover the signal
variables under three different nonparametric models (with dif-
ferent sample complexities), namely, the main effect, pure inter-
action and hierarchical interaction model. The proof uses heavily
the special property of the `1 type kernel studied in Section I.

5. Section O contains the supporting lemma.

APPENDIX B: COMMON NOTATION AND ASSUMPTIONS

B.1. Notation. In addition to the notation in the main text, the fol-
lowing notation is used throughout the appendix.
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We frequently use the shorthand di = |Xi−X ′i|q and d = (d1,d2, . . .dp).
We use ` to denote the objective function with explicit `1 penalization:

`(β;Q) = F (β;Q)− λ ‖β‖1 ,

and use B = {β ∈ Rp+ : ‖β‖1 ≤ b} to denote the `1-constraint set.
Let wA(x, y) ≡ 1−P(Y = y | XA = xA) be the weight function associated

with any subset A ⊆ [p]. We introduce the notation QA to denote the unique
probability distribution such that dQA(x, y) ∝ dP (x, y) · wA(x, y), i.e.,

dQA

dP
(x, y) =

wA(x, y)∫
wA(x, y)dP

.

B.2. A List of Common Assumptions. This section lists the com-
mon assumptions that are used throughout the appendix. These are indeed
the assumptions (A1)-(A3) and (B1)-(B2) in the main text.

(A1) The function f ∈ C∞(R+) satisfies f ′ is strictly completely monotone.
Moreover q = 1 or q = 2.

(A2) For some constant M > 0, ‖X‖∞ ≤M almost surely under P.
(A3) Imperfect classification: for some constant % > 0,

E [P (Y = 1|XS) |Y = 0] > %, E [P (Y = 0|XS) |Y = 1] > %.

(B1) For some constant ζ > 0, E[|Xj −X ′j |] ≥ ζ for j 6∈ S. Here the expec-
tation is taken under P.

(B2) In the case where q = 2, f ′ has an analytical extension on the complex
plane C such that |f ′(z)| ≤ A(1+ |z|)NeB|Re(z)| for some A,B,N <∞.

We refer the readers to Section 4 of the main text for the explanations of the
assumptions.

APPENDIX C: BASICS ON MODELS

This section discusses the very basics of the modeling. Proposition 1 shows
that the definition of signal and noise variables (see Section 1.3 in the main
text) are well-posed.

Proposition 1. There exists a unique subset S ⊆ [p] with the following
three properties: (i) Y | X ∼ Y | XS, (ii) XS ⊥ XSc and (iii) there is no
strict subset A ( S which satisfies (i) and (ii).

Proof. First we prove existence. Start with S = {1, . . . , p} and note that
it trivially satisfies (i) and (ii). If no strict subset of {1, . . . , p} satisfies (i)
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and (ii), then S satisfies (iii) also and we are done. Otherwise if a strict
subset A ( S satisfies (i) and (ii), set S equal to A. Repeat this process until
we arrive at a set S for which there is no strict subset that satisfies (i) and
(ii). This process terminates in at most p steps and the S returned by the
process satisfies (i), (ii), (iii).

Next, we prove uniqueness. Suppose there exist subsets A,B satisfying (i),
(ii) and (iii). By (i), we have Y |XA = Y |XB and therefore for all t ∈ R,

(1) E[eitY |XA] = E[eitY |XB].

Taking the conditional expectation w.r.t XA on both sides yields

E[eitY |XA] = E[E[eitY |XB]|XA] = E[E[eitY |XB]|XA∩B] = E[eitY | XA∩B]

where the second equality comes from the fact that XA\B ⊥ XB since B sat-
isfies (ii) and the third equality comes from the tower property of conditional
expectation. Thus, we have shown for all t ∈ R,

E[eitY |XA] = E[eitY |XA∩B].

This means Y |XA∩B = Y |XA = Y |X. Moreover, we have

P (X) = P (XB)P (XBc) = P (XA∩B)P (XB\A)P (XBc)

where the first equality is from XB ⊥ XBc and the second equality is from
XA ⊥ XAc . Thus XA∩B ⊥ X(A∩B)c . Hence, we have shown A∩B is a subset
that satisfies (i) and (ii). Since A,B satisfy (iii), it implies A = A ∩B = B.
This proves the uniqueness.

APPENDIX D: PROPERTIES OF F NEEDED TO DETECT
INTERACTIONS

This section presents the proof of Theorem 1 in the main text, showing
that a necessary and sufficient condition for f to detect all possible interac-
tions is that f ′ needs to be strictly completely monotone.

D.1. Proof of Theorem 1. The proof is divided into two parts.

Proof of Part 1 of Theorem 1. Consider the XOR signal of order s:

Y = sign (X1X2 · · ·Xs) where Xj i.i.d Q
(
Xj = ±1

2

)
=

1

2

As f satisfies the Axiom 1 and 2, it means that for the above XOR signal,
we have for all β ∈ Rs+ of full support (i.e., supp(β) = [s]) and c ∈ R,

EB−W
[
f(c+

∥∥X −X ′∥∥q
q,β

)
]
> 0.
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Now, a simple evaluation of the expectation gives that for all β of full support

EB−W
[
f(c+

∥∥X −X ′∥∥q
q,β

)
]

=
1

2s−1

∑
u∈{0,1}s

(−1)par(u)−1 · f
(
c+

s∑
j=1

βjuj

)
> 0

(2)

where par(u) is defined as the parity of number of 1s in u, i.e.,

par(u) =

{
1 if #{i : ui = 1} is odd
0 if #{i : ui = 1} is even

.

The mid-term of equation (2) is the s-th order finite difference of the function
f , a quantity that measures the moduli of local smoothness of the function
f [4]. Lemma D.1 connects the s-th order finite difference to the s-th or-
der derivative when f is smooth. The proof of Lemma D.1 is deferred to
Section D.2.

Lemma D.1. Let f : R → R be a smooth function that has continuous
differentiable derivatives up to order s. Let {aj,1}j∈[s] and {aj,0}j∈[s] be two
sequences where aj,i ∈ R for j ∈ [s] and i ∈ {0, 1}. Consider

F (x; s) :=
∑

u∈{0,1}s
(−1)par(u)−1 · f

(
x+

s∑
j=1

aj,uj

)
.

Then we have the integral representation for F (x; s):

F (x; s) = (−1)s−1
s∏
j=1

(aj,1−aj,0)

∫ 1

0

∫ 1

0
. . .

∫ 1

0
f (s)

(
x+

s∑
j=1

aj(tj)
)
dt1dt2 . . . dtj

where the function aj : [0, 1]→ R is defined by

aj(t) = taj,1 + (1− t)aj,0.

Now we apply Lemma D.1 to the sequence aj,1 = βj , aj,0 = 0. From
equation (2), we get for all β of full support (i.e. βj > 0 for j ∈ [s])

EB−W
[
f(c+

∥∥X −X ′∥∥q
q,β

)
]

= (−1)s−1 ·
( ∏
j∈[s]

βj

)
·
∫ 1

0

∫ 1

0
. . .

∫ 1

0
f (s)

(
c+

s∑
j=1

βjtj

)
dt1dt2 . . . dts > 0.
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Starting from below we set βj = ε for some ε > 0. As a result, we obtain

(3) (−1)s−1

∫ 1

0

∫ 1

0
. . .

∫ 1

0
f (s)

(
c+ ε

s∑
j=1

tj

)
dt1dt2 . . . dts > 0.

We wish to mention that inequality (3) holds for all ε > 0 and s ∈ N.
Now we prove that for all s ∈ N, the following holds:

(4) (−1)(s−1)f (s)(c) ≥ 0 for all c ≥ 0.

Indeed, suppose f (s)(c) 6= 0 for some c ≥ 0. By continuity of x 7→ f (s)(x)
(since f ∈ C∞(R+) by assumption), we can choose ε > 0 sufficiently small
such that f (s)(c + ε

∑s
j=1 tj) has the same sign as f (s)(c) for all tj ∈ [0, 1].

Fix this ε > 0. Now we can see from equation (3) that this immediately
implies that (−1)(s−1)f (s)(c) > 0. This proves the desired equation (4).

Next, we show the inequality in equation (4) must be strict. Suppose on
the contrary f (s)(c) = 0 for some c ≥ 0 and s ∈ N. We divide our discussion
into two cases.

1. In the first case, we assume s is odd. Now equation (4) implies f (s)

is nonnegative and non-increasing on R+. Hence f (s)(c) = 0 implies
f (s)(x) = 0 for all x ≥ c. This contradicts equation (3).

2. In the second case, we assume s is even. Now equation (4) implies f (s)

is nonpositive and non-decreasing on R+. Hence f (s)(c) = 0 implies
f (s)(x) = 0 for x ≥ c. This contradicts equation (3).

As a summary, we have shown the inequality in equation (4) must be strict.
This proves that f ′ has to be strictly completely monotone.

Proof of Part 2 of Theorem 1. Let f ∈ C∞(R+) be such that f ′ is strictly
completely monotone. It suffices to prove for q ∈ {1, 2}:

EB−W [f(
∥∥X −X ′∥∥q

q
)] ≥ 0

for all distributions on (X,Y ) with equality if and only if X ⊥ Y . We in-
troduce the following definition of conditionally positive (negative) (semi)-
definite kernels.

Definition D.1. A continuous function K : Rd × Rd → R is said to be
conditionally positive semi-definite if

(5)
N∑
i=1

N∑
j=1

αiαjK(xi, xj) ≥ 0.
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for all N ∈ N, all pairwise distinct values x1, x2, . . . , xN ∈ Rd and all α ∈ RN
satisfying

∑N
i=1 αi = 0. The function f is said to be conditionally positive

definite if Eq (5) is strict unless α is zero. Conditionally negative semi-
definite and conditionally negative definite functions are defined analogously.

A fundamental result due to Székely and Rizzo [14] shows that

EB−W
[
K
(
X,X ′

)]
≥ 0

whenever K is conditionally negative definite and moreover the equality
is strict when X is not independent of Y . Hence it suffices to prove that
K(X,X ′) = f(‖X −X ′‖qq) is conditionally negative definite when q ∈ {1, 2}.

• For the case q = 2, Schoenberg [12] shows that when f ′ is strictly
completely monotone, then the function K(X,X ′) = f(‖X −X ′‖22) is
conditionally negative definite (see also [10]).

• For the case q = 1, Bernstein’s theorem for completely monotone func-
tions [11] shows that any function f ∈ C∞(R+) whose derivative f ′

is strictly completely monotone admits the following Lévy–Khintchine
representation

f(x) = a+ bx+

∫ ∞
0

(1− e−tx)µ(dt).

where a ∈ R, b ≥ 0 and µ is a non-negative measure on R+ satisfying
(i) µ (0,∞) > 0 and (ii)

∫∞
0 min {1, x}µ(dx) <∞. Therefore,

(6) f(
∥∥x− x′∥∥

1
) = a+ b

∥∥x− x′∥∥
1

+

∫ ∞
0

(
1− e−t·‖x−x′‖1

)
dµ (t)

Note that both (x, x′) 7→ ‖x− x′‖1 and (x, x′) 7→ −e−‖x−x′‖1 are
conditionally negative definite (see [12]). This shows that K(x, x′) =
f(‖x− x′‖1), as an weighted average of conditionally negative defi-
nite kernels (note the total weights are positive since µ((0,∞)) > 0 is
strict), must be also conditionally negative definite.

D.2. Proof of Lemma D.1. The proof is by induction. Consider s = 1.

F (x; 1) = f(x+ a1(1))− f(x+ a1(0))

=

∫ 1

0
f (1)(x+ a1(t1))dt1 · (a1,1 − a1,0).
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Assume the integral representation holds for s ≤ k − 1. Consider s = k. Use
the notation fx(·) to represent the function f(x+ ·). For s = k, we compute

F (x; k) =
∑

u∈{0,1}k
(−1)par(u)−1 · fx

( k∑
j=1

aj,uj

)

=
∑

u∈{0,1}k,uk=1

(−1)par(u)−1 · fx
( k−1∑
j=1

aj,uj + ak,1

)

+
∑

u∈{0,1}k,uk=0

(−1)par(u)−1 · fx
( k−1∑
j=1

aj,uj + ak,0

)

=
∑

u∈{0,1}k−1

(−1)par(u) · fx
( k−1∑
j=1

aj,uj + ak,1

)

+
∑

u∈{0,1}k−1

(−1)par(u)−1 · fx
( k−1∑
j=1

aj,uj + ak,0

)

= (−1) ·
∑

u∈{0,1}k−1

(−1)par(u)−1 ·

fx( k−1∑
j=1

aj,uj + ak,1

)
− fx

( k−1∑
j=1

aj,uj + ak,0

)
= (−1) ·

∑
u∈{0,1}k−1

(−1)par(u)−1 ·
∫ 1

0
f (1)
x

( k−1∑
j=1

aj,uj + ak(tk)
)
dtk · (ak,1 − ak,0)

= (−1) ·
∫ 1

0

∑
u∈{0,1}k−1

(−1)par(u)−1 · f (1)
x

( k−1∑
j=1

aj,uj + ak(tk)
)
dtk · (ak,1 − ak,0)

(7)

By induction hypothesis for s = k − 1, we have the representation

∑
u∈{0,1}k−1

(−1)par(u)−1f (1)
x

( k−1∑
j=1

aj,uj + ak(tk)
)

= (−1)k−1 ·
∫ 1

0

∫ 1

0
. . .

∫ 1

0
f (k)
x

( k−1∑
j=1

aj(tj)
)
dt1dt2 . . . dtk−1 ·

k−1∏
j=1

(aj,1 − aj,0).

Now substitute it into the last line of equation (7). We obtain

F (x; k) = (−1)k ·
∫ 1

0

∫ 1

0
. . .

∫ 1

0
f (k)
x

( k−1∑
j=1

aj(tj)
)
dt1dt2 . . . dtk ·

k∏
j=1

(aj,1−aj,0),
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This gives the desired integral representation.

APPENDIX E: THE MASKING PHENOMENON: LANDSCAPE
ANALYSIS OF OBJECTIVE FUNCTION

This section studies the masking phenomenon of the metric learning ob-
jective F (β;Q). Proposition 2 and Proposition 2 show that it is possible
to construct some distribution Q such that the support of any stationary
point of F (β;Q) is a strict subset of the signal set S. This implies that naive
maximization of the objective F (β;Q) can’t recover the signal set S.

The organization of the section is as follows. Section E.1 presents the proof
of Proposition 2. Section E.2 presents Proposition 2 (which complements the
example in Section 2.2 of the main text). Section E.3 presents the proof of
Proposition 2.

E.1. Proof of Proposition 2. We consider the model

Q(Y = 1) = Q(Y = 0) =
1

2
, X1 ⊥ X2 | Y

Q
(
Xj = ±1

2
| Y = 1

)
=

1

2
(1± δj), j = 1, 2

Q
(
Xj = ±1

2
| Y = 0

)
=

1

2
(1∓ δj), j = 1, 2

where the parameters δ1, δ2 ∈ (0, 1) are to be determined. Denote

Dr = {β ∈ R2
+ : max{β1, β2} ≤ r}.

Below we show we can carefully choose the parameters 1 > δ1 > δ2 > 0 such
that for all large enough r, β = (r, 0) is the unique stationary point w.r.t Dr.

We first show for any δ1 > δ2 and any r > 0, any stationary point β ∈ Dr
must satisfy β1 = r. To see this, it suffices to show the objective is strictly
increasing w.r.t β1. Indeed, we prove for all β ∈ Dr,

(8)
∂

∂β1
F (β;Q) > 0

Below we prove equation (8) holds for all β ∈ Dr. Indeed, by definition,

∂

∂β1
F (β;Q) = EB−W

[
|X1 −X ′1|f ′(β1|X1 −X ′1|+ β2|X2 −X ′2|)

]
=

1

2
(δ2

1 − δ2
2)(f ′(β1)− f ′(β1 + β2)) + δ2

1f
′(β1 + β2)

(9)

Now, by assumption δ1 > δ2 > 0, and f ′(β1) ≥ f ′(β1 + β2) > 0 since f ′ is
strictly completely monotone. As a result, equation (9) implies the desired
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equation (8). As mentioned before, this implies for all δ1 > δ2 > 0, all r > 0,
any stationary point β ∈ Dr must satisfy β1 = r.

Next, we show for any δ1 > δ2, β∗ = (r, 0) is the unique global maximum
in Dr for all large enough r. Since F (β;Q) is always strictly increasing w.r.t
β1, it suffices to prove for all large enough r, the inequality below

(10) F (β∗;Q) ≥ F (β;Q)

holds for any β of the form β = (r, c) where c ∈ [0, r] and additionally with
equality if and only if c = 0. We evaluate F (β;Q) at β = (r, c)

F (β;Q) |β=(r,c)

= EB−W
[
f(r|X1 −X ′1|+ c|X2 −X ′2|)

]
=

1

2

[
(δ2

1 + δ2
2)f(0) + (δ2

1 + δ2
2)f(r + c) + (δ2

1 − δ2
2)f(r) + (δ2

2 − δ2
1)f(c)

]
.

Substitute the above expression into (10). It suffices to prove for all large
enough r, the inequality below holds for all c ∈ [0, r]

(11) (δ2
1 − δ2

2)(f(c)− f(0)) ≥ (δ2
1 + δ2

2)(f(r + c)− f(r))

with equality if and only if c = 0.
Below we prove this result. By assumption f ′ ∈ C∞(R+) is strictly com-

pletely monotone satisfying f ′(∞) = 0. By Lemma H.1, we obtain that

f(x) = a−
∫ ∞

0
e−txµ(dt).

where a ∈ R and µ is a non-negative finite measure on [0,∞) that satisfies
|µ| = µ(R+) > 0. As a result, we have that

f(r + c)− f(r) =

∫ ∞
0

e−tr
(
1− e−tc

)
µ(dt)

f(c)− f(0) =

∫ ∞
0

(
1− e−tc

)
µ(dt).

(12)

Now that t 7→ e−tr is decreasing and t 7→ 1−e−tc is increasing. By covariance
inequality (Lemma O.6), we obtain (recall |µ| = µ([0,∞)) > 0)∫ ∞

0
e−tr

(
1− e−tc

)
µ(dt) ≤ 1

|µ|

∫ ∞
0

e−trµ(dt) ·
∫ ∞

0
(1− e−tc)µ(dt)

which, in view of the identity (12), is equivalent to

(13) f(r + c)− f(r) ≤ 1

|µ|

∫ ∞
0

e−trµ(dt) · (f(c)− f(0)).
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Note that equation (13) holds for all r, c > 0. Now, by dominated convergence
theorem,

∫∞
0 e−trµ(dt)→ 0 as r →∞. Hence, equation (13) implies that the

desired inequality (11) must hold for all large enough r, and with equality if
and only if c = 0. This proves that for any fixed δ1 > δ2, β∗ = (r, 0) is the
unique global maximum in Dr for all large enough r.

Finally, we prove that, under the assumption that f ′ is strictly completely
monotone, and that f ′ is not slowly varying at ∞, we can carefully choose
δ1 > δ2 > 0 such that β∗ = (r, 0) is the unique stationary point in Dr for
all large enough r. Indeed, let δ1 > δ2 > 0. By the first part, we know there
exists some r0 ≡ r0(δ1, δ2) < ∞ such that for all r > r0, any stationary
point β ∈ Dr must satisfy β = (r, c) for some c ∈ [0, r]. Now, our strategy
is to carefully design δ1 > δ2 > 0 such that for all large enough r, any point
β = (r, c) where c > 0 can’t be stationary. The high level idea is to prove that
under the appropriate choice of the parameters δ1, δ2, we have for all large
enough r, the objective is strictly decreasing w.r.t β2, i.e., for all c ∈ (0, r]

(14)
∂

∂β2
F (β;Q) |β=(r,c)< 0.

Below we show we can achieve this goal.
To see this, we start by evaluating the gradient w.r.t β2 at β = (r, c)

∂

∂β2
F (β;Q) |β=(r,c) =

1

2

[
(δ2

1 + δ2
2)f ′(r + c)− (δ2

1 − δ2
2)f ′(c)

]
.

By simple algebraic manipulation, we obtain the bound

∂

∂β2
F (β;Q) |β=(r,c) ≤

1

2
(δ2

1 + δ2
2) ·

(
sup
c∈[0,r]

f ′(r + c)

f ′(c)
− δ2

1 − δ2
2

δ2
1 + δ2

2

)
(15)

Here comes the key. We show at the end of the section that any completely
monotone function f ′ with f ′(∞) = 0 must satisfy

(16) sup
c∈[0,r]

f ′(r + c)

f ′(c)
=
f ′(2r)

f ′(r)
.

Since f ′ is not slowly varying, we can always pick α < 1 and 1 > δ1 > δ2 > 0
such that

(17) lim sup
r→∞

f ′(2r)

f ′(r)
< α <

δ2
1 − δ2

2

δ2
1 + δ2

2

.

Pick any δ1, δ2, α that satisfies equation (17). By equation (15) and equation
(16), we conclude that for the δ1, δ2 we pick, equation (14) holds for all
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c ∈ (0, r] when r is large enough. As mentioned earlier, this proves that for
the δ1, δ2 we pick, the only stationary point in Dr is β∗ = (r, 0) when r is
sufficiently large.

To complete the proof, here we show the deferred claim at equation (16). It
suffices to prove the mapping c 7→ g(c) := f ′(r+c)

f ′(c) is monotonically increas-
ing. Since f ′ ∈ C∞(R+) is strictly completely monotone with f ′(∞) = 0,
Lemma H.1 implies the following representation of f ′:

(18) f ′(x) =

∫ ∞
0

te−txµ(dt).

where µ is a non-negative finite measure on [0,∞). Let 0 ≤ c1 < c2 ≤ r.
Below we show g(c1) ≤ g(c2), or equivalently,

(19) log f ′(r + c1) + log f ′(c2) ≤ log f ′(r + c2) + log f ′(c1).

To see this, x → f ′(x) is log-convex since x → te−tx is log-convex [3]. Now
equation (19) is merely a consequence of the majorization inequality [8].

E.2. Proposition 2. Proposition 2 makes precise the qualitative state-
ments described in the example in Section 2.2.

We start by recalling the setup in the example. Consider the following
additive main effect model:

Q(Y = 1) = Q(Y = 0) =
1

2
, X1 ⊥ X2 ⊥ . . . ⊥ Xs|Y

Q(Xj = ±1

2
| Y = 1) =

1

2
(1± δj) for j ∈ [s]

Q(Xj = ±1

2
| Y = 0) =

1

2
(1∓ δj) for j ∈ [s].

In above δj > 0 is the signal size for the feature Xj . For convenience, we
reparametrize the signal size as ρj = (1 + δ2

j )/(1 − δ2
j ). We assume ρ1 >

ρ2 . . . > ρs > 0, or equivalently δ1 > δ2 > . . . > δs > 0. Fix f(x) = −e−x
and q > 0. Proposition 2 below gives a full description on all the stationary
points of the objective

F (β;Q) = EB−W
[
F (
∥∥X −X ′∥∥q

q,β
)
]

with respect to the box-constraint set Dr = {β : 0 ≤ βj ≤ r} when r is large.
To conveniently state the result, we introduce the following definition.

Definition E.1 (Classification of Stationary Points). We make the be-
low definition on stationary points β of F (β;Q) w.r.t the constraint Dr.
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• A stationary point β is called regular if maxi∈supp(β) βi < r.
• A stationary point β is called irregular if maxi∈supp(β) βi = r.
• A stationary point β is called abnormal if it is irregular with βak =
r > maxi 6=k βai . Here supp(β) = {a1, . . . , ak} where a1 < . . . < ak.

We briefly explain the motivation for the definition. Proposition 2 shows
that a stationary point of F (β;Q) w.r.t the constraint Dr can be either reg-
ular or abnormal, and that existence of an abnormal stationary point is due
to the boundary effect caused by the box constraint of the optimization (an
abnormal stationary point β has the largest coordinate βak for the weakest
signal Xak).

We also introduce the notation ρ̄B = (
∏
j∈B ρj)

1
|B| for any subset B ⊆ [s].

Hence ρ̄B is the geometric average of the signal size ρj over j ∈ B.

Proposition 2. For all large enough r1, the stationary points of F (β;Q)
with respect to Dr = {β : 0 ≤ βj ≤ r} has the below characterization:

1. There exists one and only one 1-sparse stationary point at (r, 0, . . . , 0),
which is also the (unique) global maximum.

2. There does not exist any 2-sparse stationary point.
3. There may exist k-sparse stationary points for any k ≥ 3. Pick any set

A = {a1, . . . , ak} ⊆ [s] with |A| = k ≥ 3 and a1 > . . . > ak.

(a) There is a regular stationary point β with supp(β) = A only if

(20) min
j∈A

ρ2
j ≥ (ρ̄A)

k
k−1 ≥ max

j∈[s]
ρj .

Conversely, if the inequality (20) strictly holds, then there is a
regular stationary point β with supp(β) = A.

(b) There is an irregular stationary point β with supp(β) = A only if

(21) min
j∈A\{ak}

ρ2
j >

(
ρ̄A\{ak}

) k−1
k−2 · ρ

− 1
k−2

ak > max
j∈[s]\{ak}

ρj .

Conversely, if the inequality (21) strictly holds, then there is an
irregular stationary point β with supp(β) = A, and moreover that
stationary point β must also be abnormal.

E.3. Proof of Proposition 2. We start with Lemma E.1, which gives
the expression of the gradient of the objective F (β;Q) under the above
model. The proof of Lemma E.1 is deferred into Section E.3.4.

1There exists r0 <∞ such that the statement of Proposition 2 holds for all r ≥ r0.
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Lemma E.1. For any j ∈ [s], we have the expression of the gradient:

∂

∂βj
F (β;Q) = ωje

−βj ·
∏
k 6=j

(
(1− ωk) + ωke

−βk
)

− (1− ωj)e−βj ·
∏
k 6=j

(
ωk + (1− ωk)e−βk

)
.

In above, ωj = 1
2(1 + δ2

j ) for all j ∈ [s].

Since the statement of Proposition 2 contains three separate parts, we
present the proof of them in the three subsections below.

E.3.1. Proof of Part 1 of Proposition 2. The organization of the proof
can be decomposed into the following three steps.

• First we show that β = re1 = (r, 0, . . . , 0) is the unique global maxi-
mum for large enough r.

• Next we show that β = re1 is the only stationary point of the form
β = ce1 when r is large enough.

• Finally, we show no 1-sparse stationary point can take the form of cej
for j 6= 1. This holds for all r > 0.

First, we start by proving that β = re1 is the unique global maximum
of F (β;Q) over the constraint set Dr when r is large enough. Let us first
compute the objective function (recall ωj = 1

2(1 + δ2
j ))

F (β;Q) = −
∏
j

EB
[
e−βj |Xj−X

′
j |
]

+
∏
j

EW
[
e−βj |Xj−X

′
j |
]

=
∏
j

(
ωj + (1− ωj)e−βj

)
−
∏
j

(
1− ωj + ωje

−βj
)
.

(22)

Writing β∗ = re1, we obtain F (β∗;Q) = (2ω1−1)(1− e−r). Below, we prove
that for large enough r, the inequality below holds for all β ∈ Dr

(23) F (β∗;Q) ≥ F (β;Q)

with an equality if and only if β = β∗. To see this, we find it convenient
to introduce an algebraic transformation xj = e−βj ∈ [e−r, 1]. Recall the
expression in equation (22). Define the function x 7→ G(x) by

G(x) =
∏
j

(ωj + (1− ωj)xj)−
∏
j

(1− ωj + ωjxj) .
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Hence, G(x) = F (β;Q) when x is the transformation of β (xj = e−βj ). It
suffices to prove that for the point x∗ = e−re1 (which is the transformation
of β∗), we have the inequality below holds for all x such that xj ∈ [e−r, 1]

(24) G(x∗) = (2ω1 − 1)(1− e−r) ≥ G(x)

and this inequality becomes an equality if and only if x = x∗.
Below we prove this. Although the proof is elementary, it is technically

non-trivial. The first step is to show that the maximum of G(x) over Er must
be attained at some x ∈ ext(Er) where ext(Er) = {x : xj ∈ {e−r, 1}}. To see
this, we use the method of adjustment[13]. Indeed, for any x 6∈ ext(Er), we
can always pick a variable xj ∈ (e−r, 1). Since G(x) is linear in xj given all
other variables x−j , we can always increase G(x) by fixing x−j and adjusting
xj to one of the boundary values e−r and 1. The principle of method of
adjustment then says the maximum of G(x) must be attained at some x ∈
ext(Er). As a result of this fact, it suffices to prove for all large enough r, the
inequality below holds for all x ∈ ext(Er)

(25) G(x∗) = (2ω1 − 1)(1− e−r) ≥ G(x).

In addition, we need to show the point x ∈ ext(Er) that attains the maximum
maxx∈ext(Er)G(x) is unique, and that point is x = x∗.

Checking inequality (25) holds for large r is the second step. Here we note
that given any x, G (as a function of ω) is monotonically increasing w.r.t ωj .
Now we introduce the definition of x 7→ Ḡ(x), where we replace all the ωj
(j ≥ 2) in the definition of G by ω2:

Ḡ(x) = (ω1 + (1− ω1)x1) ·
∏
j>1

(ω2 + (1− ω2)xj)

− ((1− ω1) + ω1x1) ·
∏
j>1

((1− ω2) + ω2xj)

One can show that G(x) ≤ Ḡ(x) using the assumption ω2 ≥ ωj for all j ≥ 2.
Additionally, G(x∗) = Ḡ(x∗). As a result, it suffices to prove for large enough
r, the inequality Ḡ(x∗) ≥ Ḡ(x) holds for all x ∈ Er. Now, for any x ∈ Er, if
we denote k = |{j ≥ 2 : xj = e−r}|, then we have that Ḡ(x) = H(k) where

H(k) =
(
ω1 + (1− ω1)e−r

)
(ω2 + (1− ω2)e−r)k

−
(
(1− ω1) + ω1e

−r) · ((1− ω2) + ω2e
−r)k .

In particular Ḡ(x∗) = H(0). Thus, it amounts fo check for the mapping
k 7→ H(k) where k ∈ N, H(k) attains its unique maximum at k = 0 when
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r is sufficiently large. With some legwork, we can easily show this by first
proving that H(1) < H(0) for all large enough r, and then showing that
k 7→ H(k) is decreasing as long as H(1) < H(0) and ω1 + (1 − ω1)e−r < 1.
Consequently, we can show easily that the mapping k 7→ H(k) has its unique
global maximum attained at k = 0 when r is large enough. From our previous
(lengthy) discussions, we know that this implies that β = re1 is the unique
global maximum of F (β;Q) over Dr for all sufficiently large r.

Next, we prove that β = re1 is the unique stationary point of the form
β = ce1 for large r. To do so, our strategy is to prove that ∂

∂β1
F (β;Q) > 0

at β = ce1 for all c > 0. To see this, Lemma E.1 implies for any c > 0

∂

∂β1
F (β;Q) |β=ce1= (2ω1 − 1)e−c > 0.

Hence β = ce1 can be stationary only if β = re1.
Finally, we prove that β = cej can’t be stationary for c > 0 and j 6= 1. We

show that ∂
∂β1

F (β;Q) |β=cej> 0 and thereby such a point can’t be stationary.
Once again using Lemma E.1, and noticing that ω1 > ωj >

1
2 , we obtain

∂

∂β1
F (β;Q) |β=cej = ω1 − ωj + (ω1 + ωj − 1)e−c > 0,

Thus β = cej can’t be stationary for all c > 0 and j 6= 1.

E.3.2. Proof of Part 2 of Proposition 2. The proof is by contradiction.
Let’s assume β = c1ej1 + c2ej2 for j1 < j2 is a stationary point. As before,
using Lemma E.1, and using the assumption that ωj1 > ωj2 >

1
2 , we obtain

∂

∂βj1
F (β;Q) = e−c1 ·

(
(ωj1 − ωj2) + (ωj1 + ωj2 − 1) · e−c2

)
> 0.

Thus, if β = c1ej1 + c2ej2 is a stationary point, it must be c1 = r.
Now, using Lemma E.1 again, we obtain at β = rej1 + c2ej2

∂

∂βj2
F (β;Q) = e−c2 ·

(
(ωj2 − ωj1) + (ωj1 + ωj2 − 1) · e−r

)
Note then this is negative for large r since ωj1 > ωj2 by assumption. Thus,
for large enough r, any stationary point β = c1ej1 + c2ej2 with c1 = r must
have c2 = 0, and thus can’t be 2-sparse.

This proves that no 2-sparse stationary points exists for large enough r.
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E.3.3. Proof of Part 3 of Proposition 2. Let A = {a1, a2, . . . , ak} with
a1 < a2 < . . . < ak. Assume β is a stationary point with supp(β) = A. We
decompose A = A1 ∪ A2 where A1 = {i ∈ A : βi < r} and A2 = {i ∈ A :
βi = r}. Write β =

∑k
l=1 βleal . Note that β is stationary if and only if

∂

∂βj
F (β;Q) = 0 for j ∈ A1,

∂

∂βj
F (β;Q) ≥ 0 for j ∈ A2,

∂

∂βj
F (β;Q) ≤ 0 for j ∈ Ac.

Using Lemma E.1, we obtain equivalent expressions of above

ρj =
∏

l 6=j,l∈A
ρ∗l for j ∈ A1(26)

ρj ≥
∏

l 6=j,l∈A
ρ∗l for j ∈ A2(27)

ρj ≤
∏
l∈A

ρ∗l for j ∈ Ac(28)

where we use the notation

ρj =
ωj

1− ωj
, ωj =

1

2
(1 + δ2

j )

ρ∗j =
ω∗j

1− ω∗j
, ω∗j = ωj(1− φj) + (1− ωj)φj , φj =

1

1 + eβj

The constraint βj ∈ [0, r] is equivalent to ωj+e
−r

1+e−r ≥ ω
∗
j ≥ 1

2 , or equivalently

(29) 1 < ρ∗j ≤ ρj + e−r(1 + ρj)

Now we have the system of equations (26)–(28) w.r.t the unknown variables
ρ∗j along with the constraint (29). Each solution of the system of equations
corresponds to one stationary point. We note that the solution of the sys-
tem is a tuple ({ρ∗j}j∈A, A1, A2). Sometimes, we write ({ρ∗j}j∈A, A1, A2) =
({ρ∗j (r)}j∈A, A1(r), A2(r)) to emphasize its dependence on r.

In the first part of the proof, we prove the following results.

1. The set A2(r) must be either A2(r) = ∅ or A2(r) = {ak} for large
enough r.
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2. There exists some r0 <∞ such that the following holds: assuming there
exists a solution ({ρ∗j (r)}j∈A, A1(r), A2(r)) for the system of equa-
tions (26)–(28) with A2(r) = ∅ for some r > r0, then it is necessary
that the following condition holds:

(30) min
j∈A

ρ2
j ≥ (ρ̄A)

k
k−1 ≥ max

j∈[s]
ρj .

By our definition, the stationary point β = β(r) corresponding to such
a solution ({ρ∗j (r)}j∈A, A1(r), A2(r)) is a regular stationary point.

3. There exists some r0 < ∞ such that the following holds: assuming
there exists a solution ({ρ∗j (r)}j∈A, A1(r), A2(r)) for the system of
equations (26)–(28) with A2(r) = {ak} for some r > r0, then it is
necessary that the following condition holds:

(31) min
j∈A\{ak}

ρ2
j ≥

(
ρ̄A\{ak}

) k−1
k−2 · ρ

− 1
k−2

ak ≥ max
j∈[s]\{ak}

ρj .

By our definition, the stationary point β = β(r) corresponding to such
a solution ({ρ∗j (r)}j∈A, A1(r), A2(r)) is an irregular stationary point.

Below we prove the above results. Let Ã1 and Ã2 be two sets such that
Ã1 = A1(r) and Ã2 = A2(r) hold for some sequence r = rn where rn tends
to infinity. Fix this sequence. Let ρ̃j be (one of) the accumulation point of
the sequence {ρ∗j (rn)}n∈N (note the existence of the accumulation point is
guaranteed since {ρ∗j (rn)}n∈N is uniformly bounded). Since the system of
equations (26), (26), (28) hold for ({ρ∗j (r)}j∈A, A1(r), A2(r)) for r = rn, it
also holds for the limit ({ρ̃j}j∈A, Ã1, Ã2), i.e.,

ρj =
∏

l 6=j,l∈A
ρ̃l for j ∈ Ã1(32)

ρj ≥
∏

l 6=j,l∈A
ρ̃l for j ∈ Ã2(33)

ρj ≤
∏
l∈A

ρ̃l for j ∈ Ac(34)

where the constraint becomes (compare it with equation (29))

(35)

{
ρ̃j = ρj for j ∈ Ã2

1 ≤ ρ̃j ≤ ρj for j 6∈ Ã2

According to equations (32) and (33) and the constraint equation (35), we
know that ρj ≥ ρ̃l for any j, l ∈ A and l 6= j. In particular, this means that
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minj 6=l ρj ≥ ρ̃l for l ∈ A. As ρl = ρ̃l for l ∈ Ã2, this implies that Ã2 is either
empty or a singleton, and further Ã2 = {ak} when it is a singleton. Now we
divide our discussion into two cases:

1. In the case where Ã2 = ∅, one can solve that

ρ̃j = ρ−1
j · (ρ̄A)

k
k−1 .

Checking the constraint gives the necessary condition (30).
2. In the second case where Ã2 = {ak}, one can solve for j ∈ A, j 6= ak

ρ̃j = ρ−1
j · ρ

− 1
k−2

ak · (ρ̄A\{ak})
k−1
k−2 .

Checking the constraint gives the necessary condition (31).

In summary, this proves the aforementioned claim.
Next, we argue the following claim.

1. Suppose the following strengthening of condition (30) holds

(36) min
j∈A

ρ2
j > (ρ̄A)

k
k−1 > max

j∈[s]
ρj .

then the system of equations (26)–(28) has a solution with A2 = ∅.
This holds for all r > 0.

2. Suppose the following strengthening of condition (31) holds

(37) min
j∈A\{ak}

ρ2
j >

(
ρ̄A\{ak}

) k−1
k−2 · ρ

− 1
k−2

ak > max
j∈[s]\{ak}

ρj .

then the system of equations (26)–(28) has a solution with A2 = {ak}.
This holds for all sufficiently large r.

The above claim is easy to prove.

1. Suppose condition (36) holds. Then we can take A1 = a, A2 = ∅, and
set for j ∈ A

ρ∗j = ρ−1
j · (ρ̄A)

k
k−1 .

It is easy to check that the above ρ∗j satisfy all the constraints.
2. Suppose condition (37) holds. Then we can take A1 = A\{ak}, A2 =
{ak}, and set ρ∗ak = ρak + e−r(1 + ρj) and for j ∈ A1,

ρ∗j = ρ−1
j · (ρ

∗
ak

)−
1

k−2 · (ρ̄A\{ak})
k−1
k−2

It is easy to verify that the above ρ∗j thus defined satisfy all the con-
straints for all sufficiently large r.

The proof is thus complete.
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E.3.4. Proof of Lemma E.1. The proof is simply computation. First, we
have by definition

(38)
∂

∂βj
F (β;Q) = EB−W

[
|Xj −X ′j |e−

∑
k βk|Xk−X′k|

]
.

Now we evaluate the RHS. Consider the case EB[·] = E[·|Y 6= Y ′]. By con-
ditional independence of Xk given Y , we have

EB
[
|Xj −X ′j |e−

∑
k βk|Xk−X′k|

]
= EB

[
E
[
|Xj −X ′j |e

−βj |Xj−X′j | | Y, Y ′
]
· E
[
e−

∑
k 6=j βk|Xk−X′k| | Y, Y ′

]]
Note the conditional expectation given Y, Y ′ are the same for (Y, Y ′) = (0, 1)
and (Y, Y ′) = (1, 0). Thus, we have on Y 6= Y ′

E
[
|Xj −X ′j |e

−βj |Xj−X′j ||Y, Y ′
]

= ωje
−βj .

E
[
e−βk|Xk−X

′
k||Y, Y ′

]
= (1− ωk) + ωke

−βk .

Substituting these expressions back into our formula yields

EB
[
|Xj −X ′j |e−

∑
k βk|Xk−X′k|

]
= ωje

−βj ·
∏
k 6=j

(
(1− ωk) + ωk · e−βk

)
.

Similarly, we can solve the case EW [·] = E[·|Y = Y ′]:

EW
[
|Xj −X ′j |e−

∑
k βk|Xk−X′k|

]
= (1− ωj)e−βj ·

∏
k 6=j

(
ωk + (1− ωk)e−βk

)
.

Substituting the expressions into equation (38) yields the desired result.

APPENDIX F: PROPERTIES OF ALGORITHMS ON POPULATION

F.1. Proof of Proposition 1. The proof is divided into two parts. For
notational simplicity, we denote B = supp(β).

1. Theorem 1 says F (β) > 0 only if XB is not independent of Y .
2. Let A be any strict subset A ( B such that XA ⊥ XB\A. We prove

that Y |XB 6∼ Y |XA. Suppose on the contrary that Y |XB ∼ Y |XA.
This says that if we denote X̃ = XB, then we have Y |X̃ ∼ Y |X̃A and
X̃A ⊥ X̃Ac . Here comes to the key of the proof. Since F (β) > 0 by
assumption, Proposition 3 implies that for any variable j ∈ B\A:

(39)
∂

∂βj
F (β) < 0.
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This means that we can strictly increase the objective by decreasing
βj for any variable j ∈ B\A, which contradicts the assumption that β
is a local maximum! Thus we must have Y |XB 6∼ Y |XA.

F.2. Proof of Proposition 3. The proof is based on routine calcula-
tion. Let P and Q denote the density functions of the distributions P and Q
w.r.t some base measure µ (say µ = 1

2(P+Q)). We start from the definition
for the rebalancing distribution Q:

(40) Q(xŜ , xŜc , y) =
1

Z
· P (xŜ , xŜc , y) · P (1− y | xŜ)

where Z is the normalization factor. We now prove the two claims (a)-(b) of
Proposition 3 in the below paragraphs.

(a) Integratation over xŜc on both sides of equation (40) gives

Q(xŜ , y) =
1

Z
· P (xŜ , y) · P (1− y | xŜ)(41)

=
1

Z
· P (xŜ) · P (y | xŜ) · P (1− y | xŜ).(42)

Note y takes value only from {0, 1}. Thus, equation (42) shows the joint
distribution Q(xŜ , y) is in fact independent of the value y ∈ {0, 1}. This
proves that XŜ ⊥ Y under Q and moreover that Q(Y = ±1) = 1

2 .
(b) We use equation (40) and (41) to obtain

Q(xŜc | xŜ , y) =
Q(xŜ , xŜc , y)

Q(xŜ , y)
=
P (xŜ , xŜc , y)

P (xŜ , y)
= P (xŜc | xŜ , y).

This proves that the conditional distribution of XŜc |XŜ , Y is the same
under P and Q as desired.

(c) We can W.L.O.G assume Ŝ ⊆ S since the weight satisfies

P (1− y | xŜ) = P (1− y | xŜ∩S).

As Y |XS = Y |X and XS ⊥ XSc under P, we have XSc ⊥ (Y,XS)
under P . In particular, the density P factorizes into products: P (y, x) =
P (y, xS)P (xSc). Consequently, if we substitute it into equation (40), we
obtain the expression

Q(xŜ , xŜc , y) =
1

Z
·
(
P (xS , y) · P (1− y | xŜ)

)
· P (xSc)

which shows that the density Q factorizes into products of functions of
(XS , Y ) and of XSc . This implies that XSc ⊥ (Y,XS) under Q. Thus
Y |X = Y |XS and XS ⊥ XSc under Q.
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F.3. Proof of Proposition 4. We divide our proof into two parts.

1. Suppose Y | XS 6∼ Y | XŜ . Below we show that supp(β) is a subset of
S\Ŝ for any local maximum β. Our proof proceeds in three steps.

• First, we show that F (β;Pw) > 0. Let β̃(ε) = β + ε1S for ε > 0.
Note XS 6⊥ Y (since Y | XS 6∼ Y | XŜ). Since supp(β̃(ε)) ⊇ S,
Theorem 1 immediate implies that F (β̃(ε);Pw) > 0 for any ε > 0.
This implies that F (β;Pw) > 0 since β is a local maximum.

• Second, we show that supp(β) ∩ (S\Ŝ) 6= ∅. Note that
– Xsupp(β) 6⊥ Y . Indeed, we have F (β;Pω) > 0 since the first

step. Thus Xsupp(β) 6⊥ Y by Proposition 1.
– XSc∪Ŝ ⊥ Y under Pw thanks to Proposition 3.

The above points show that supp(β) can’t be a subset of Sc ∪ Ŝ.
Equivalently, this means that supp(β) ∩ (S\Ŝ) 6= ∅.

• Lastly, we show that supp(β) ∩ Sc = ∅. It suffices to prove that
supp(β) = supp(β)∩ S. Proposition 3 shows that Sc remains the
noise under Pw, i.e., Y |X = Y |XS and XS ⊥ XSc under Pw. Thus
Y |Xsupp(β) ∼ Y |Xsupp(β)∩S under Pw. As β is the local maximum,
the second part of Proposition 1 shows that supp(β)∩S = supp(β)
must be true. This proves supp(β) ∩ Sc = ∅.

2. Suppose Y |XS ∼ Y |XŜ . By definition of Pw, we have

Pw(xŜ , xŜc , y) =
1

Z
· P (x, y) · P (1− y | xŜ)

where Z is the normalization factor. Notice that

P (x, y) = P (y | xS)P (xS)P (xSc) = P (y | xŜ)P (xS)P (xSc),

where the last identity uses Y |XS ∼ Y |XŜ . Hence we have

(43) Pw(xŜ , xŜc , y) =
1

Z
· P (1− y | xŜ)P (y | xŜ)P (xS)P (xSc)

Note y takes value only from {0, 1}. Thus, equation (43) shows that the
joint distribution Pw(xŜ , xŜc , y) is independent of the value y ∈ {0, 1},
which implies that X ⊥ Y under Pw. Hence F (β;Pw) ≡ 0 for all β.

F.4. Proof of Proposition 5. In fact, Proposition 5 is an immediate
consequence of Proposition 4. By Proposition 4, (i) the population Algo-
rithm 1 never selects any noise variable from Sc, and (ii) the algorithm
always adds new signal variables from S as long as Y |XS 6∼ Y |XŜ . Hence,
Algorithm 1 terminates in finite iterations, and outputs a set Ŝ that satisfies
the desired properties (i) Y |XS ∼ Y |XŜ and (ii) Ŝ ⊆ S.
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APPENDIX G: POPULATION GRADIENT ON NOISE VARIABLES

This section studies the gradient of the population objective with respect
to noise variables. The results in the section serve as the foundation on
establishing the false discovery guarantee of the metric learning algorithm
(see the proof of Theorem 2 and Theorem 3 in Section K and Section M).

G.1. Main Results. Below we present the main results of the section.
The result of the section only applies to Q that is balanced: Q(Y = 0) =
Q(Y = 1) = 1

2 . Let’s consider the population objective function

(44) F (β;Q) = EB−W [f(〈β,d〉)] .

Proposition 3 shows that the gradient with respect to noise variable is non-
positive. The proof of Proposition 3 is deferred to Section G.2.

Proposition 3. Assume the following assumption.

• Y | X = Y | XS and XS ⊥ XSc under Q.
• Let f ∈ C∞(R+) be such that f ′ is strictly completely monotone.
• The choice q ∈ {1, 2}.

Then we have for any β ∈ Rp+ and any j ∈ Sc,

∂

∂βj
F (β;Q) ≤ 0.

The inequality is strict if the below two conditions are satisfied:

• F (β;Q) > 0
• the random variable Xj is not degenerate.

While Proposition 3 shows that qualitatively the gradient with respect
to noise variables is negative, Proposition 4 makes one step further, show-
ing that quantitatively the absolute value of the (negative) gradient is lower
bounded by the (square of the) objective function. We emphasize that Propo-
sition 4 is the key technical result that leads to the self-penalizing property
of the metric learning algorithm (see Theorem 2). The proof of Proposition 4
is deferred to Section G.3.

Proposition 4. Assume the following assumptions.

• Y | X = Y | XS and XS ⊥ XSc under Q.
• Let f ∈ C∞(R+) be such that f ′ is strictly completely monotone.
• The choice q ∈ {1, 2}.
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• For some M <∞, |X|∞ ≤M almost surely under Q.
• In the case where q = 2, f ′ has an analytical extension on the complex
plane C such that |f ′(z)| ≤ A(1 + |z|)NeB|<z| for some A,B,N <∞.

Let B =
{
β ∈ Rp+ : ‖β‖1 ≤ b

}
. Then there exists a constant c > 0 depending

only on b,M, q, f such that for any β ∈ B and any noise variable j ∈ Sc,

∂

∂βj
F (β;Q) ≤ −c · E

[
dj
]
· (F (β;Q))2 ≤ 0.

G.2. Proof of Proposition 3. We compute the gradient w.r.t βj :

(45)
∂

∂βj
F (β;Q) = EB−W

[
dj · f ′ (〈β,d〉)

]
.

We condition on XSc , X
′
Sc so that dSc may be treated as constant for j ∈ Sc.

Note that

EB
[
dj · f ′ (〈β,d〉)

]
=E

[
dj · EB[f ′(〈βSc ,dSc〉+ 〈βS ,dS〉) | XSc , X

′
Sc ]
]

(i)

≤ E
[
dj · EW [f ′(〈βSc ,dSc〉+ 〈βS ,dS〉) | XSc , X

′
Sc ]
]

= EW
[
dj · f ′ (〈β,d〉)

]
(46)

For (i), note that XS ⊥ XSc and Y |X = Y |XS imply XSc ⊥ XS |Y under Q.
So the distribution of dS is unaffected by conditioning on XSc , X

′
Sc . Then

(i) follows from the fact that

EB
[
f ′ (c+ 〈βS ,dS〉)

]
≥ EW

[
f ′ (c+ 〈βS ,dS〉)

]
for all c > 0 since f ′ is completely monotone (see discussion of transla-
tion invariance in Section 2.1). Finally, we notice that if F (β;Q) > 0, then
Xsupp(β) is not independent of Y , and if Xj is non-degenerate, then dj > 0
with positive probability, in which case inequality (i) becomes strict since f ′

is a strictly completely monotone function.

G.3. Proof of Proposition 4. In the proof, we use the notation F (β; f,Q) =
F (β;Q) to emphasize the dependence of F (β;Q) on f .

Our first step is to derive the expression for the gradient of the F (β; f,Q).
According to equations (45) and (46) in the proof of Proposition 3, we have
the following characterization on the gradient of F (β; f,Q). For any β ∈ B
and j ∈ Sc, we have the identity

∂

∂βj
F (β; f,Q) = E

[
dj · EB−W [f ′(〈β,d〉) | XSc , X

′
Sc ]
]
.(47)
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The key part to establish Proposition 4 is to upper bound the RHS of the
above expression, and in particular, the conditional expectation inside the
RHS of the above expression. The bound is formally summarized in the
following claim, whose proof is deferred into Section G.4.

Claim 1. Under the Assumption of Proposition 4, there exists some con-
stant c > 0 that depends only on b,M, q, f such that for any β ∈ B:

(48) EB−W [f ′(〈β,d〉) | XSc , X
′
Sc ] ≤ −c · (F (β; f,Q))2.

Let c > 0 be any constant such that equation (48) holds for all β ∈ B. Sub-
stituting equation (48) into equation (47) yields the desired Proposition 4.

G.4. Proof of Claim 1. The proof is divided into two steps.

• In the first step, we prove a reduction argument, showing that it suffices
to prove Claim 1 under the additional assumption that f ′(∞) = 0.

• In the second step, we prove Claim 1 holds under the additional as-
sumption that the function f satisfies f ′(∞) = 0.

G.4.1. Step 1: reduction argument. To see this how this reduction argu-
ment works, we introduce the auxiliary function (f ′(∞) is well-defined since
f ′ is completely monotone—see Lemma H.1):

f(x) = f(x)− f ′(∞)x.

Note that f satisfies f ′(∞) = 0 by assumption. Here comes the key argument—
we show that by moving from f to f , the LHS of equation (48) remains the
same, while the RHS of equation (48) decreases. More precisely, we prove

1. The LHS of equation (48) remains the same after we substitute the
function f by the auxiliary function f , i.e.,

(49) EB−W [f ′(〈β,d〉) | XSc , X
′
Sc ] = EB−W [f

′
(〈β,d〉) | XSc , X

′
Sc ]

2. The RHS of equation (48) decreases after we substitute the function f
by the auxiliary function f , i.e.,

(50) F (β; f,Q) ≥ F (β; f,Q).

Here is a quick proof of equations (49) and (50).

1. Equation (49) follows from the fact that the functions f ′(x) and f ′(x)

are off by a constant, i.e., f ′(x) = f ′(x)− f ′(∞).
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2. To prove equation (50), we start with the following identity:

(51) F (β; f,Q) = F (β; f,Q) + f ′(∞) · 〈β,EB−W [d]〉.

Now we prove that f ′(∞) ≥ 0 and EB−W [d] ∈ Rp+. To see this,

– f ′(∞) ≥ 0 since f ′ is completely monotone.
– We prove EB−W [di] ≥ 0 for all i ∈ [p]. In the case where q = 1,
EB−W [di] = EB−W [|Xi − X ′i|] ≥ 0 (note that f(x) =

√
x is

completely monotone, and the result follows from Theorem 1). In
the case where q = 2, a simple calculation yields that EB−W [di] =
EB−W [(Xi −X ′i)2] = (EB−W [Xi])

2 ≥ 0.

Now equation (50) follows from equation (51).

With equations (49) and (50) at hand, it suffices to prove that Claim 1 holds
for the function f . Now the function f satisfies all the assumptions stated in
the Claim 1 with the additional property f ′(∞) = 0. One can verify this via

• f
′ is completely monotone (since f ′ is completely monotone).

• In the case when q = 2, f ′ has an analytical extension on the complex
plane C such that |f ′(z)| ≤ A(1 + |z|)NeB|<z| for some A,B,N < ∞
(since in the case when q = 2, by assumption f has an analytical
extension with |f ′(z)| ≤ A(1 + |z|)NeB|<z| for some A,B,N <∞).

This proves the reduction—we only need to prove that Claim 1 holds under
the additional assumption that f ′(∞) = 0.

G.4.2. Step 2: main argument. Below we prove Claim 1 holds under the
additional assumption that f ′(∞) = 0. The proof follows from a series of
technical inequalities that are detailed in Lemma G.1-G.4 below. For sim-
plicity of the statement, we introduce the notational shorthandM = (2M)q.

Lemma G.1. Assume the following assumptions:

• Y | X = Y | XS and XS ⊥ XSc under Q.
• The function f ∈ C∞(R+) and f ′ is completely monotone.
• For some M <∞, |X|∞ ≤M almost surely under Q.

Then the following inequality holds for all β ∈ B:

EB−W [f ′(〈β,d〉) | XSc , X
′
Sc ] ≤ EB−W

[
f ′(〈βS ,dS〉+Mb)

]
.

The proof of Lemma G.1 is deferred into Section G.5.1.

Lemma G.2. Assume f ′ is completely monotone and f ′(∞) = 0.
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1. In the case where q = 1, we have

EB−W
[
f ′(〈βS ,dS〉+Mb)

]
≤ f |S|+1(Mb)

f |S|+1(0)
· EB−W

[
f ′(〈βS ,dS〉)

]
.

2. In the case where q = 2, if assuming further that f ′ has an analytical
extension on the complex plane C such that |f ′(z)| ≤ A(1 + |z|)NeB|<z|
for some A,B,N <∞, then we have

EB−W
[
f ′(〈βS ,dS〉+Mb)

]
≤ e−BMb · EB−W

[
f ′(〈βS ,dS〉)

]
.

The proof of Lemma G.2 is deferred into Section G.5.2.

Lemma G.3. Assume the following assumptions:

• Assume f ′ is completely monotone on R+ and f ′(∞) = 0.
• For some M <∞, |X|∞ ≤M almost surely under Q.

Then the following inequality holds for all β ∈ B:

EB−W
[
f ′(〈βS ,dS〉)

]
≤ − 1

4Mb|f(0)− f(∞)|
· (EB−W [f(〈βS ,dS〉)])2 .

The proof of Lemma G.3 is deferred into Section G.5.3.

Lemma G.4. Assume f ′ is completely monotone and f ′(∞) = 0. Then
the following inequality holds for all β ∈ B:

EB−W [f(〈βS ,dS〉)] ≥ EB−W [f(〈β,d〉)] ≥ 0.

The proof of Lemma G.4 is deferred into Section G.5.4.
As a summary, Lemma G.1–G.4 immediately imply the desired Claim 1

holds under the additional assumption that f ′(∞) = 0.

G.4.3. Summary. The desired Claim 1 now follows from the results in
the above two subsections G.4.1 and G.4.2.

G.5. Proof of Lemma G.1-G.4.

G.5.1. Proof of Lemma G.1. Introduce the function

(52) G(x) = EB−W
[
f ′(〈βS ,dS〉+ x)

]
.

The desired Lemma G.1 follows from the following two claims.
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(i) We have the representations that hold for all β ∈ B

EB−W [f ′(〈β,d〉) | XSc , X
′
Sc ] = G(〈βSc ,dSc〉)

EB−W
[
f ′(〈βS ,dS〉+Mb)

]
= G(Mb)

(53)

(ii) The function x 7→ G(x) is monotonically increasing.

The above claims (i) and (ii) immediately imply the desired Lemma G.1
since 〈βSc ,dSc〉 ≤Mb holds for all β ∈ B (by Hölder’s inequality).

Below we prove the aforementioned two claims. To see claim (i), we note
that XSc ⊥ XS |Y since XS ⊥ XSc and Y |X = Y |XS by assumption. Hence,
the distribution of dS is unaffected by conditioning on XSc , X

′
Sc . This proves

the first equation in (53). The second equation in (53) follows by definition.
This proves claim (i). To see claim (ii), we take the derivative ofG(x) and ob-
tain that G′(x) = EB−W [f ′′(〈βS ,dS〉+ x)]. Since −f ′′ is completely mono-
tone (since f ′ is completely monotone by assumption), this gives G′(x) ≥ 0
for all x and hence x 7→ G(x) is increasing. This proves the claim (ii).

G.5.2. Proof of Lemma G.2. By Lemma H.1, we have for some non-
negative measure µ on R+ such that for all integers k ≥ 1 (note that we
have used the assumption f ′(∞) = 0 here):

(54) f (k)(x) = (−1)(k−1) ·
∫ ∞

0
tke−txµ(dt)

As a result, we can use Fubini’s theorem to obtain for all x ≥ 0:

(55) EB−W
[
f ′(〈βS ,dS〉+ x)

]
=

∫
EB−W

[
e
−t‖XS−X′S‖

q

q,βS

]
te−txµ(dt).

1. Consider the first case where q = 1. We aim to prove the inequality
(56)

−EB−W
[
f ′(〈βS ,dS +Mb〉)

]
≥ f |S|+1(Mb)

f |S|+1(0)
·
(
−EB−W

[
f ′(〈βS ,dS〉)

])
.

The core technique of the proof is to decouple the two integrands in the
RHS of equation (55) using the covariance inequality (see Lemma O.6).
Indeed, the covariance inequality states that any pair of monotonically
decreasing functions g1, g2 and any nonnegative measure µ̃ must satisfy

(57)
∫
g1(t)g2(t)µ̃(dt) ≥ 1

|µ̃|

∫
g1(t)µ̃(dt) ·

∫
g2(t)µ̃(dt).

Below we use equation (55) to rewrite the LHS of equation (56) into

(58) − EB−W
[
f ′(〈βS ,dS〉+Mb)

]
=

∫
g1(t)g2(t)µ̃(dt)
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for appropriately chosen monotonic functions g1, g2 and measure µ̃, and
then we will see how covariance inequality leads to the desired bound
in equation (56). First we pick g1(t) = e−tMb which is monotonically
decreasing. Next, we construct g2(t) in a careful way. By Lemma H.2,
if we denote qt(ω) = t

ω2+t2
, we have the identity (the notation φi,S(ωS)

for i = 0, 1 stands for φi,S(ωS) = E[ei〈ωS ,XS〉 | Y = i], see Section H
for details)

− EB−W
[
e
−t‖XS−X′S‖1,βS

]
=

∫
|φ0,S(tωS)− φ1,S(tωS)|2 ·

∏
k∈S

qβk(ωk)dωS

=

∫
|φ0,S(ωS)− φ1,S(ωS)|2 ·

∏
k∈S

qtβk(ωk)dωS .

(59)

where the last equality follows from change of variables. Let g2(t) be

(60) g2(t) =

∫
|φ0,S(ωS)− φ1,S(ωS)|2 ·

∏
k∈S

(1

t
· qtβk(ωk)

)
dωS .

According to equation (59), we have the identity

−EB−W
[
e
−t‖XS−X′S‖1,βS

]
= t|S|g2(t).

In addition, the function t → g2(t) is monotonically decreasing since
t→ 1

t ·qtβ(ω) = 1
π ·

β
ω2+t2β2 is monotonically decreasing. Finally, we pick

µ̃ to be dµ̃ = t|S|+1dµ. One can then easily verify that equation (58)
holds for the functions g1, g2 and the measure µ̃ that we pick. As a
consequence of the covariance inequality, we obtain the lower bound

−EB−W
[
f ′(〈βS ,dS〉+ x)

]
≥ 1

|µ̃|
·
∫
g1(t)µ̃(dt) ·

∫
g2(t)µ̃(dt).(61)

Now we evaluate the RHS. By equation (54) and (55), we obtain

|µ̃| =
∫
t|S|+1µ(dt) = |f |S|+1(0)|.∫

g1(t)µ̃(dt) =

∫
e−tMbt|S|+1µ(dt) = |f |S|+1(Mb)|∫

g2(t)µ̃(dt) = EB−W
[
f ′(〈βS ,dS〉)

]
.

(62)

Substituting equations (62) into equation (61) immediately yields the
desired equation (56). This completes the proof.
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2. Consider the second case where q = 2. The Schwartz–Paley–Wiener
theorem implies that µ is compactly supported, with supp(µ) ⊆ [0, B].
By equation (55), it is immediate that

(63) EB−W
[
f ′(〈βS ,dS〉+Mb)

]
≤ e−BMb · EB−W

[
f ′(〈βS ,dS〉)

]
.

The desired result follows from equation (56) and equation (63).

G.5.3. Proof of Lemma G.3. By Lemma H.1, we have for some non-
negative measure µ on R+ (note the assumption f ′(∞) = 0),

(64) f(x) = f(∞)−
∫ ∞

0
e−txµ(dt) and f ′(x) =

∫ ∞
0

te−txµ(dt)

As a result, we can use Fubini’s theorem to write

EB−W
[
f ′(〈βS ,dS〉)

]
=

∫ ∞
0

t · EB−W
[
e−t〈βS ,dS〉

]
µ(dt).

EB−W [f(〈βS ,dS〉)] = −
∫ ∞

0
EB−W

[
e−t〈βS ,dS〉

]
µ(dt).

(65)

Let δ > 0 be a constant to be determined. We apply Markov’s inequality to
the first equation of (65), and we derive for all δ > 0

EB−W
[
f ′(〈βS ,dS〉)

]
≤ δ ·

∫ ∞
δ

EB−W
[
e−t〈βS ,dS〉

]
µ(dt)

= −δ ·
(
EB−W [f(〈βS ,dS〉)] +

∫ δ

0
EB−W

[
e−t〈βS ,dS〉

]
µ(dt)

)
.

(66)

Now we upper bound the integral in the last line of equation (66). Using the
fact that 〈βS ,dS〉 ≤Mb and the elementary inequality |e−x−1| ≤ |x| for all
x ≥ 0, we obtain for all δ > 0,∣∣∣∣∫ δ

0
EB−W

[
e−t〈βS ,dS〉

]
µ(dt)

∣∣∣∣ =

∣∣∣∣∫ δ

0
EB−W

[(
e−t〈βS ,dS〉 − 1

)]
µ(dt)

∣∣∣∣
≤
∫ δ

0
2Mbtµ(dt) ≤ 2Mb|f(0)− f(∞)|δ.

Substituting the bound into equation (66) yields for all δ > 0

EB−W
[
f ′(〈βS ,dS〉)

]
≤ −δ ·

(
EB−W [f(〈βS ,dS〉)]− 2Mb|f(0)− f(∞)|δ

)
.

Optimizing δ > 0 on the RHS yields the final bound

EB−W
[
f ′(〈βS ,dS〉)

]
≤ − 1

4Mb|f(0)− f(∞)|
· (EB−W [f(〈βS ,dS〉)])2 .
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G.5.4. Proof of Lemma G.4. This is implied by Lemma H.3.

APPENDIX H: PROPERTIES OF F (β;Q)—GENERAL RESULT

The result of this section applies to the objective F (β;Q) when q = 1 or
q = 2. We recall the definition of F (β;Q):

F (β;Q) = EB−W
[
f
( ∥∥X −X ′∥∥q

q,β

)]
= EB−W

[
f
(
〈β,d〉

)]
.

The section assumes Q is balanced: Q(Y = 0) = Q(Y = 1) = 1
2 . This

assumption assures the following identity that holds for any function h,

EB−W
[
h(X,X ′)

]
=

1

2

∫
h(x, x′)(Q0(dx)−Q1(dx))(Q0(dx′)−Q1(dx′)),

where Q0,Q1 denote the conditional distribution X|Y = 0 and X|Y = 1.

H.1. Notation. Let Q0 and Q1 denote the conditional distribution of
X given Y = 0 and Y = 1. Write

φ0(ω) = E0

[
ei〈ω,X〉

]
and φ1(ω) = E1

[
ei〈ω,X〉

]
.

We use Qβ to denote the following function (depending on the choice of q):

1. Qβ(ω) is the Cauchy density with scale β when q = 1.

Qβ(ω) =
1

π

β

ω2 + β2
.

2. Qβ(ω) is the Gaussian density with scale β when q = 2.

Qβ(ω) =
1√

2πβ2
e
− ω2

2β2 .

H.2. Main Result. Lemma H.1 below gives a useful characterization
of the function f whose derivative f ′ is strictly completely monotone with
f ′(∞) = 0. We defer the proof of Lemma H.1 into Section H.3.

Lemma H.1. Assume Assumption (A1). Then for some scalar a ∈ R
and some non-negative measure µ on [0,∞) with µ(R+) > 0, we have the
representation:

(67) f(x) = a+ f ′(∞)x−
∫ ∞

0
e−txµ(dt),
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where f ′(∞) = limx→∞ f
′(x). Moreover, we have that

f ′(x) = f ′(∞) +

∫ ∞
0

te−txµ(dt)

f (k)(x) = (−1)k−1 ·
∫ ∞

0
tke−txµ(dt) for k ≥ 2, k ∈ N.

(68)

Lemma H.2 below gives useful representations of the objective F (β;Q).
We defer the proof of Lemma H.2 in Section H.4.

Lemma H.2. Assume Assumption (A1). Then, for some non-negative
measure µ on (0,∞) with µ(R+) > 0, we have the representations:

F (β;Q) = F1(β;Q) + F2(β;Q)(69)

where F1(β;Q) and F2(β;Q) are defined by

F1(β;Q) = f ′(∞) · EB−W
[∥∥X −X ′∥∥q

q,β

]
F2(β;Q) = −

∫
EB−W

[
e−t‖X−X

′‖qq,β
]
µ(dt)

=

∫∫
|φ0(tω)− φ1(tω)|2 ·

p∏
k=1

Qβk(ωk)dωµ(dt).

(70)

In above, the measure µ also satisfies

f ′(x) = f ′(∞) +

∫ ∞
0

te−txµ(dt)

f (k)(x) = (−1)k−1 ·
∫ ∞

0
tke−txµ(dt) for k ≥ 2, k ∈ N.

(71)

In addition, we have for β ∈ Rp+ and j ∈ [p],

∂

∂βj
F (β;Q) =

∂

∂βj
F1(β;Q) +

∂

∂βj
F2(β;Q)

where we have

∂

∂βj
F1(β;Q) = f ′(∞) · EB−W

[
|Xj −X ′j |q

]
and we have for all β ∈ Rp+

∂

∂βj
F2(β;Q) =

∫
EB−W

[
t|Xj −X ′j |qe

−t‖X−X′‖qq,β
]
µ(dt)
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and for β ∈ Rp+ with βj > 0,

∂

∂βj
F2(β;Q) =

∫∫
|φ0(tω)− φ1(tω)|2 ·

∏
k 6=j

Qβk(ωk) ·
∂

∂βj
Qβj (ωj)dωµ(dt).

Lemma H.3 below essentially says that at any fixed β ∈ Rp+, throwing
away noise variables (by setting the coordinates on Sc to be 0) increases the
objective value. We defer the proof of Lemma H.3 into Section H.5.

Lemma H.3. Let Assumption (A1) hold. Assume f ′(∞) = 0. Let β ∈ Rp+
and define β̄ to be the vector such that β̄S = βS and β̄Sc = 0. Then we have

F (β̄;Q) ≥ F (β;Q).

H.3. Proof of Lemma H.1. As f ′ is strictly completely monotone,
Bernstein’s theorem for completely monotone functions [11] shows that f
admits the Lévy–Khintchine representation

(72) f(x) = a+ cx−
∫ ∞

0
e−txµ(dt).

where c ≥ 0 and µ is a non-negative finite measure on [0,∞) with µ ((0,∞)) >
0,
∫∞

0 (t∧1)µ(dt) <∞. Applying dominated convergence theorem, we obtain

(73) f ′(x) = c+

∫ ∞
0

te−txµ(dt).

Again, by dominated convergence theorem, we derive f ′(∞) = c. Substi-
tuting it back into equation (72) gives the desired equation (67). Applying
dominated convergence theorem to equation (67) yields equation (68).

H.4. Proof of Lemma H.2. By Lemma H.1, we have for some scalar
a ∈ R and non-negative finite measure µ on [0,∞) satisfying µ(R+) > 0,

f(x) = a+ f ′(∞)x−
∫ ∞

0
e−txµ(dt).

As a result, we obtain the identity

f
( ∥∥X −X ′∥∥q

q,β

)
= a+ f ′(∞)

∥∥X −X ′∥∥q
q,β
−
∫ ∞

0
e−t‖X−X

′‖qq,βdµ(t)

and therefore, Fubini’s theorem yields F (β;Q) = F1(β;Q) +F2(β;Q) where

F1(β;Q) = f ′(∞) · EB−W
[∥∥X −X ′∥∥q

q,β

]
F2(β;Q) = −

∫ ∞
0

EB−W
[
e−t‖X−X

′‖qq,β
]
dµ(t).

(74)



34 LIU AND RUAN

Now, we prove the second expression of F2(β;Q), i.e., the last identity in
equation (70). To do so, we use the fact that the Fourier transform of the
Laplace function is Cauchy density (for q = 1), and the Fourier transform
of the Gaussian density function is still the Gaussian density function (for
q = 2). This gives for q ∈ {1, 2}

(75) e−t‖X−X
′‖qq,β =

∫
Rd
e−it〈ω,X−X

′〉 ·
p∏
j=1

Qβj (ωj)dω.

where we recall Qβ is the Cauchy density with scale β. Substituting equa-
tion (75) into equation (74), we obtain

F2(β;Q) = −
∫ ∞

0
EB−W

∫
Rd
e−it〈ω,X−X

′〉 ·
p∏
j=1

Qβj (ωj)dω

 dµ(t)

= −
∫ ∞

0

∫
Rd

EB−W
[
e−it〈ω,X−X

′〉
]
·
p∏
j=1

Qβj (ωj)dωdµ(t),

(76)

where the second identity follows from Fubini’s theorem. Now that X,X ′ are
independent copies, and recall we use Q0 and Q1 to denote the conditional
distribution X|Y = 0 and X|Y = 1.Therefore,

EB−W
[
e−it〈ω,X−X

′〉
]

=− 1

2

∫∫
e−it〈ω,x−x

′〉(Q0(dx)−Q1(dx))(Q0(dx′)−Q1(dx′))

=− 1

2

∣∣∣∣∫ e−it〈ω,x〉(dQ0(x)− dQ1(x))

∣∣∣∣2 = −1

2
|φ0(tω)− φ1(tω)|2 .

(77)

Substituting equation (77) into equation (76) yields the second expression in
equation (70) as desired. Up to here, we have proved equations (69) and (70).

Finally, using dominated convergence theorem, it is easy to show that the
expressions on the gradients of F (β;Q). We omit the details.

H.5. Proof of Lemma H.3. Lemma H.2 shows that for some nonneg-
ative finite measure µ with µ(R+) > 0, we have the representation

F (β;Q) = −
∫

EB−W
[
e−t‖X−X

′‖qq,β
]
µ(dt)(78)
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Recall XS ⊥ XSc | Y (since XS ⊥ XSc and Y | X = Y | XSc). Hence

EB−W
[
e−t‖X−X

′‖qq,β
]

= EB−W
[
e
−t‖XS−X′S‖

q

q,βS · e
−t‖XSc−X′Sc‖

q

q,βc
S

]
= EB−W

[
E
[
e
−t‖XS−X′S‖

q

q,βS | Y, Y ′
]
· E
[
e
−t‖XSc−X′Sc‖

q

q,βc
S | Y, Y ′

]]
= EB−W

[
e
−t‖XS−X′S‖

q

q,βS

]
· E
[
e
−t‖XSc−X′Sc‖

q

q,βc
S

]
·

Substituting the expression into equation (78), we obtain

F (β;Q) = −
∫

E
[
e
−t‖XSc−X′Sc‖1,βc

S

]
· EB−W

[
e
−t‖XS−X′S‖1,βS

]
µ(dt)

≤ −
∫

EB−W
[
e
−t‖XS−X′S‖1,βS

]
µ(dt) = F (β̄;Q).

This proves the desired Lemma H.3.

APPENDIX I: PROPERTIES OF THE OBJECTIVE F (β;Q)—THE `1
CASE

The result of this section only applies to the objective F (β;Q) when q = 1.
We recall the definition of F (β;Q):

F (β;Q) = EB−W
[
f
( ∥∥X −X ′∥∥

1,β

)]
= EB−W

[
f
(
〈β,d〉

)]
.

The section assumes Q is balanced: Q(Y = 0) = Q(Y = 1) = 1
2 .

I.1. Notation. The notation of this section follows the notation in Sec-
tion H. Let Q0 and Q1 denote the conditional distribution of X given Y = 0
and Y = 1. Write

φ0(ω) = E0

[
ei〈ω,X〉

]
and φ1(ω) = E1

[
ei〈ω,X〉

]
.

We use Qβ to denote the Cauchy density with scale β:

Qβ(ω) =
1

π

β

ω2 + β2
.

For any subset A ⊆ [p], we introduce (with notation abuse)

FA(βA;Q) = EB−W
[
f
( ∥∥XA −X ′A

∥∥
1,βA

)]
.

φ0,A(ωA) = E0

[
ei〈ωA,XA〉

]
and φ1,A(ωA) = E1

[
ei〈ωA,XA〉

]
.
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I.2. Main Result. Lemma I.1 below shows F (β;Q) satisfies a self-
bounding property. We defer the proof of Lemma I.1 in Section I.3.

Lemma I.1. Let Assumption (A1) hold. Then F (β;Q) satisfies a self-
bounding property: for any β, β′ ∈ Rp such that 0 ≤ βj ≤ β′j for all j ∈ [p],

(79) F (β;Q) ≥ F (β′;Q) ·
p∏
j=1

(
βj
β′j

)
.

Lemma I.2 below studies the derivative of F (β;Q) when the signal is a
pure interaction. We defer the proof of Lemma I.2 in Section I.4.

Lemma I.2. Let Assumption (A1) hold. Assume that ‖X‖∞ ≤M almost
surely under Q for some M < ∞. Assume the signal is a pure interaction:
XA ⊥ Y for any strict subset A ( S. Then, for any β ∈ B and any signal
variable j ∈ S

(80)
∂

∂βj
F (β;Q) =

1

βj
· F (β;Q)−R(β;Q),

where the remainder term R(β;Q) satisfies

0 ≤ R(β;Q) ≤ π · (8M)|S|+1 · f (|S|+1)(0) ·
∏
k∈S

βk.

Lemma I.3 below provides a lower bound of F (β;P) using FS(βS ;P). To
better appreciate Lemma I.3, the reader should compare it with Lemma H.3
where we derive an upper bound of F (β;P) using FS(βS ;P) for all β ∈ Rp+.
We defer the proof of Lemma I.3 into Section I.5.

Lemma I.3. Let Assumption (A1) hold. Assume that ‖X‖∞ ≤M almost
surely under Q for some M <∞. Then, for any β ∈ B:

(81) F (β;Q) ≥ |f
|S|(2Mb)|
|f |S|(0)|

· FS(βS ;Q).

Lemma I.4 below derives a lower bound for the derivative of F (β;Q)—
this lower bound is particularly useful in the study of hierarchical interaction
recovery (it is one of the key lemma that gives the signal term). We provide
the proof of Lemma I.4 into Section I.6.
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Lemma I.4. Assume Assumption (A1). Assume Y ⊥ XA for some A ⊆
[p]. For any β such that supp(β) ⊆ A, and variable j ∈ Ac, we have

∂

∂βj
F (β;Q) ≥ 1

τ
· F (βτ ;Q),

where βτ is the following vector that differs from β only at coordinate j:

(βτ )i =

{
τ if i = j

βi if i 6= j.

I.3. Proof of Lemma I.1. Lemma H.2 shows the existence of a non-
negative measure µ on [0,∞) such that F (β;Q) = F1(β;Q)+F2(β;Q) where

F1(β;Q) = f ′(∞) · EB−W
[∥∥X −X ′∥∥

1,β

]
F2(β;Q) =

∫∫ ∣∣∣∣∫ e−it〈ω,x〉(dP0(x)− dP1(x))

∣∣∣∣2 · p∏
j=1

Qβj (ωj) dωdµ(t).

(82)

Now we show both F1(β;Q) and F2(β;Q) satisfy the self bounding property.
Showing that F1(β;Q) satisfies the self-bounding property is simple. A

direct computation gives for any vector β, β′ ∈ Rp+ with 0 ≤ βj ≤ β′j

(83) F1(β;Q) ≥ F1(β′;Q) ·
p∏
j=1

(
βj
β′j

)
.

Showing that F2(β;Q) satisfies the self-bounding property requires a little
bit more thinking. The key observation is that β → Qβ(ω) satisfies a self-
bounding property: for any scalars β, β′ with β ≤ β′,

Qβ(ω) =
1

π

β

w2 + β2
≥ 1

π

β

w2 + (β′)2
= Qβ′ (w) · β

β′
.

Hence, for any vectors β, β′ ∈ Rp with 0 ≤ βj ≤ β′j ,
p∏
j=1

Qβj (ωj) ≥
p∏
j=1

Qβ′j (ωj) ·
p∏
j=1

(
βj
β′j

)
.

As such, we see from equation (82) that F2(β;Q) must satisfy

F2(β;Q) ≥ F2(β′;Q) ·
p∏
j=1

(
βj
β′j

)

for any vectors β, β′ ∈ Rp satisfying 0 ≤ βj ≤ β′j . This completes the proof.
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I.4. Proof of Lemma I.2. Lemma H.2 shows the existence of a non-
negative measure µ on [0,∞) such that F (β;Q) = F1(β;Q)+F2(β;Q) where

F1(β;Q) = f ′(∞) · EB−W
[∥∥X −X ′∥∥

1,β

]
.

F2(β;Q) =

∫∫ ∣∣∣∣∫ e−it〈ω,x〉(dP0(x)− dP1(x))

∣∣∣∣2 · p∏
j=1

Qβj (ωj) dωdµ(t).

(84)

Below we show that for any signal variable j ∈ S, we have

∂

∂βj
F1(β;Q) =

1

βj
F1(β;Q).

∂

∂βj
F2(β;Q) =

1

βj
F2(β;Q)−R(β;Q)

where R(β;Q) ≤ π · |f (|S|+1)(0)| · (8M)|S|+1 ·
∏
k∈S

βk.

(85)

Equation (85) in conjunction with the identity F (β;Q) = F1(β;Q)+F2(β;Q)
immediately yield the desired Lemma I.2.

Now we prove equation (85) holds for any signal variable j ∈ S. First of
all, we can easily derive the first identity of equation (85). Indeed, for j ∈ S

(86)
∂

∂βj
F1(β;Q) =

1

βj
F1(β;Q).

To see this, recall our assumption that XS is a pure interaction. Hence, in
the case where |S| ≥ 2, F1(β;Q) ≡ 0 since Xi ⊥ Y for any i ∈ [p], for which
equation (86) trivially follows. Similarly, in the case where |S| = 1, F1(β;Q)
is a linear function of βj , and hence equation (86) trivially holds.

Next, we show that for any j ∈ S,

∂

∂βj
F2(β;Q) =

1

βj
F2(β;Q)−R(β;Q)

where R(β;Q) ≤ π · |f (|S|+1)(0)| · (8M)|S|+1 ·
∏
k∈S

βk.
(87)

The proof of this part is non-trivial. To start with, Lemma H.2 gives the
expression for the gradient of F2(β;Q): for any β ∈ Rp+ with βj > 0, we have

∂

∂βj
F2(β;Q) =

∫∫
|φ0(tω)− φ1(tω)|2 · ∂

∂βj
Qβj (ωj) ·

∏
k 6=j

Qβk(ωk)dωµ(dt).

(88)
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Since Qβ(ω) = β
β2+ω2 is the Cauchy density function, a simple calculation

gives for any scalar β > 0, ω ≥ 0 the identity below:

∂

∂β
Qβ(ω) =

1

β
·Qβ(ω)− π ·Q2

β(ω).

Substitute it into equation (88). We obtain for all β with βj > 0,

∂

∂βj
F2(β;Q) =

1

βj
· F2(β;Q)−R(β;Q)

where R(β;Q) = π ·
∫∫
|φ0(tω)− φ1(tω)|2 ·Q2

βj
(ωj) ·

∏
k 6=j

Qβk(ωk)dωµ(dt)

(89)

Now we upper bound R(β;Q). Lemma I.5 bounds |φ0(ω)− φ1(ω)|.

Lemma I.5. Under the assumption of Lemma I.2, we have for all ω,

|φ0(ω)− φ1(ω)| ≤ 2
∏
j∈S

(|Mωj | ∧ 2)

Lemma I.5 shows |φ0(tω)− φ1(tω)| ≤ 2 ·
∏
j∈S (tM |ωj | ∧ 2) for any t > 0.

As a result, we obtain that

∫
|φ0(tω)− φ1(tω)|2 ·Q2

βj
(ωj) ·

∏
k 6=j

Qβj (ωj)dω

≤ 2 ·
∫ ∏

k∈S
(tM |ωk| ∧ 2)2 ·Q2

βj
(ωj) ·

∏
k 6=j

Qβj (ωj)dω

= 2 ·
∫

(tM |ωj | ∧ 2)2 ·Q2
βj

(ωj)dωj ·
∏

k 6=j,k∈S

∫
(tM |ωk| ∧ 2)2 ·Qβk(ωk)dωk,

(90)

Lemma I.6 upper bounds the integrals. We defer its proof to Section I.8.

Lemma I.6. We have for any α, β > 0,∫
(α |ω| ∧ 2)2 ·Qβ(ω)dω ≤ 8αβ,∫
(α |ω| ∧ 2)2 ·Q2

β(ω)dω ≤ 4α2β.
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We apply Lemma I.6 to equation (90), and we derive∫
|φ0(tω)− φ1(tω)|2 ·Q2

βj
(ωj) ·

∏
k 6=j

Qβj (ωj)dω ≤ (8tM)|S|+1 ·
∏
k∈S

βk.

Substituting the above bound into equation (89), we obtain that

R(β;Q) ≤ π · (8M)|S|+1
∏
k∈S

βk ·
∫
t|S|+1dµ(t).(91)

Now that Lemma H.2 shows
∫
tkdµ(t) = (−1)k−1f (k)(0) for all k ≥ 2. Thus

R(β;Q) ≤ π · |f (|S|+1)(0)| · (8M)|S|+1 ·
∏
k∈S

βk.

I.5. Proof of Lemma I.3. Lemma H.2 shows the existence of a non-
negative measure µ on [0,∞) such that F (β;Q) = F1(β;Q)+F2(β;Q) where

F1(β;Q) = f ′(∞) · EB−W
[∥∥X −X ′∥∥

1,β

]
.

F2(β;Q) = −
∫

EB−W
[
e−t‖X−X

′‖1,β
]
µ(dt).

(92)

Now it suffices to show that both F1(β;Q) and F2(β;Q) satisfy the bound:

(93) Fi(β;Q) ≥ |f
|S|(2Mb)|
|f |S|(0)|

· Fi,S(βS ;Q) for i = 1, 2.

In above, the definition of Fi,S(βS ;Q) is analogous to that of FS(βS ;Q):

F1,S(β;Q) = f ′(∞) · EB−W
[∥∥XS −X ′S

∥∥
1,βS

]
.

F2,S(β;Q) = −
∫

EB−W
[
e
−t‖XS−X′S‖1,βS

]
µ(dt).

Showing that F1(β;Q) satisfies equation (93) is simple. A direct compu-
tation shows that for any β ∈ Rp+:

(94) F1(β;Q) ≥ F1,S(βS ;Q) ≥ |f
|S|(2Mb)|
|f |S|(0)|

· F1,S(βS ;Q).
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Showing that F2(β;Q) satisfies equation (93) requires a little bit more
thinking. We start with the following identity

EB−W
[
e−t‖X−X

′‖1,β
]

= EB−W
[
e
−t‖XS−X′S‖1,βS · e

−t‖XSc−X′Sc‖1,βc
S

]
= EB−W

[
E
[
e
−t‖XS−X′S‖1,βS | Y, Y ′

]
· E
[
e
−t‖XSc−X′Sc‖1,βc

S | Y, Y ′
]]

= EB−W
[
e
−t‖XS−X′S‖1,βS

]
· E
[
e
−t‖XSc−X′Sc‖1,βc

S

]
·

where in the second identity, we use the fact that XS ⊥ XSc | Y (since
XS ⊥ XSc and Y | X = Y | XSc), and in the last identity, we use the fact
that XSc ⊥ Y . Substituting the expression into equation (92), we obtain

(95) F2(β;Q) = −
∫

E
[
e
−t‖XSc−X′Sc‖1,βc

S

]
·EB−W

[
e
−t‖XS−X′S‖1,βS

]
µ(dt)

Below we show how equation (95) implies that F2(β;Q) satisfies the equa-
tion (93). The key is to decouple the two integrands in equation (95) using the
following covariance inequality: for any function g1, g2 that is monotonically
decreasing, and any non-negative measure µ̃, we have∫

g1(t)g2(t)µ̃(dt) ≥ 1

|µ̃|

∫
g1(t)µ̃(dt)

∫
g2(t)µ̃(dt)

We apply the covariance inequality to appropriately chosen functions g1, g2

and measure µ̃. We first choose the function g1(t) to be

(96) g1(t) = E
[
e
−t‖XSc−X′Sc‖1,βc

S

]
.

It is clear that t → g1(t) is monotonically decreasing. Next we introduce
g2(t). By Lemma H.2, we have the identity

−EB−W
[
e
−t‖XS−X′S‖1,βS

]
=

∫
|φ0,S(tωS)− φ1,S(tωS)|2 ·

∏
k∈S

Qβk(ωk)dωS

=

∫
|φ0,S(ωS)− φ1,S(ωS)|2 ·

∏
k∈S

Qtβk(ωk)dωS .

where the second identity follows from the change of variables. Let g2(t) be

g2(t) =

∫
|φ0,S(ωS)− φ1,S(ωS)|2 ·

∏
k∈S

(1

t
·Qtβk(ωk)

)
dωS .
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Then t→ g2(t) is monotonically decreasing since t→ 1
t ·Qtβ(ω) = 1

π ·
β

ω2+t2β2

is monotonically decreasing. In addition, we have the identity

(97) − EB−W
[
e
−t‖XS−X′S‖1,βS

]
= t|S|g2(t).

Finally, we choose the non-negative measure µ̃ by dµ̃ = t|S|dµ. Now, we
apply the covariance inequality to the functions g1, g2 and the measure µ̃,
and since equations (95), (96) and (97), we obtain

(98) F2(β;Q) =

∫
g1(t)g2(t)µ̃(dt) ≥ 1

|µ̃|

∫
g1(t)µ̃(dt) ·

∫
g2(t)µ̃(dt).

Now we evaluate the terms on the RHS. First, by Lemma H.2, we have

(99) |µ̃| =
∫
t|S|µ(dt) = |f |S|(0)|

Next, we have the lower bound∫
g1(t)µ̃(dt) =

∫
E
[
e
−t‖XS−X′S‖1,βS

]
t|S|µ(dt)

= E
[
f |S|

( ∥∥XS −X ′S
∥∥

1,βS

)]
≥ |f |S|(2Mb)|,

(100)

where the second step uses Lemma H.2, and the last step utilizes the fact
that f is strictly completely monotone, and that ‖XS −X ′S‖1,βS ≤ 2Mb
since β ∈ B. Finally, we have the identity∫

g2(t)µ̃(dt) =

∫
t|S|g2(t)µ(dt)

= −
∫

EB−W
[
e
−t‖XS−X′S‖1,βS

]
µ(dt) = F2,S(βS ;Q).

(101)

Substituting equations (99), (100) and (101) into equation (98) yields

F2(β;Q) ≥ |f
|S|(2Mb)|
|f |S|(0)|

· F2,S(βS ;Q).

This proves that F2(β;Q) satisfies the equation (93). The proof of Lemma I.3
is thus complete.
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I.6. Proof of Lemma I.4. The proof starts from the identity:

(102)
∂

∂βj
F (β;Q) = lim

ε→0+

1

ε
· (F (βε;Q)− F (β;Q)) .

Now we evaluate the RHS. First, since supp(β) ⊆ A and Y ⊥ XA, we have
(103)
F (β;Q) = EB−W

[
f(
∥∥X −X ′∥∥

1,β
)
]

= EB−W
[
f(
∥∥XA −X ′A

∥∥
1,βA

)
]

= 0

Next, Lemma I.1 shows when 0 < ε ≤ τ ,

(104) F (βε;Q) ≥ ε

τ
· F (βτ ;Q).

Substitute equations (103) and (104) into equation (102). We obtain

∂

∂βj
F (β;Q) ≥ 1

τ
· F (βτ ;Q).

I.7. Proof of Lemma I.5. Note that Y ⊥ XSc and XS ⊥ XSc | Y
(since XS ⊥ XSc and Y | X = Y | XS by assumption). Hence, we have

|φ0(ω)− φ1(ω)| =
∣∣∣E0e

i〈ω,X〉 − E1e
i〈ω,X〉

∣∣∣
=
∣∣∣Eei〈ωSc ,XSc 〉 · (E0 − E1)ei〈ωS ,XS〉

∣∣∣ ≤ ∣∣∣(E0 − E1)ei〈ωS ,XS〉
∣∣∣ .

(105)

Now, we bound the RHS. The key idea is the identity below:

ei〈ωS ,XS〉 =R(X;ω) +
∑
A(S

(−1)|S−A|−1ei〈ωA,XA〉

where R(X;ω) =
∏
j∈S

(
eiωjXj − 1

)
.

(106)

The identity is obtained by simply multiplying out the terms in R (X;ω).
By assumption, XA has the same distribution under P0 and P1 whenever
A ( S. So we have for A ( S,

(107) E0

[
ei〈ωA,XA〉

]
= E1

[
ei〈ωA,XA〉

]
.

Now, in view of Eq (106) and Eq (107), we have the identity:

E0

[
ei〈ωS ,XS〉

]
− E1

[
ei〈ωS ,XS〉

]
= E0 [R(X;ω)]− E1 [R (X;ω)] ,(108)
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i.e. all terms of the form ei〈ωA,XA〉 cancel in the difference for A ( S. Now,
note the following elementary inequality that holds for any x ∈ R,

|eix − 1| ≤ |x| ∧ 2.

Since |X|∞ ≤M by assumption, we have for all ω,

(109) |R(X;ω)| ≤
∏
j∈S

(|ωjXj | ∧ 2) ≤
∏
j∈S

(|Mωj | ∧ 2).

As a direct consequence of equations (105), (108) and (109), we obtain

|φ0(ω)− φ1(ω)| ≤ |E0[R(X;ω)]− E1[R(X;ω)]| ≤ 2
∏
j∈S

(|Mωj | ∧ 2).

This completes the proof of Lemma I.5.

I.8. Proof of Lemma I.6. First, we prove the first inequality.∫
(α |ω| ∧ 2)2 ·Qβ(ω)dω = 2 ·

∫ ∞
0

(α |ω| ∧ 2)2 ·Qβ(ω)dω

= 2

∫ 2/α

0
α2ω2 · β

β2 + ω2
dω + 8

∫ ∞
2/α

β

β2 + ω2
dω

≤ 2

∫ 2/α

0
α2β dω + 8

∫ ∞
2/α

β

ω2
dω = 8αβ.

(110)

Next, we prove the second inequality. Note∫
(α |ω| ∧ 2)2 ·Q2

β(ω)dω = 2 ·
∫ ∞

0
(α |ω| ∧ 2)2 ·Q2

β(ω)dω

≤ 2

∫ β

0
α2ω2 · β2

(ω2 + β2)2
dω + 2

∫ ∞
β

α2ω2 · β2

(ω2 + β2)2
dω

≤ 2

∫ β

0
α2dω + 2α2

∫ ∞
β

β2

ω2
dω = 4α2β.

(111)

This completes the proof of Lemma I.6.

APPENDIX J: UNIFORM CONVERGENCE RESULTS

J.1. Main Results. In this section, we study the uniform convergence
of the empirical objective F (β;Qn) to population objective F (β;Q) over the
constraint set β ∈ B, where we recall the definition B =

{
β ∈ Rp+ : ‖β‖1 ≤ b

}
.

Here we restrict Q to be a reweighting distribution, i.e., Q = Qw for some



SUPPLEMENTARY MATERIAL 45

nonnegative weight function w, where formally Qw is defined as the unique
probability measure that satisfies dQw(x, y) ∝ dP (x, y) ·w(x, y). It is helpful
for the reader to keep in mind, for the purpose of studying metric learn-
ing algorithm, the underlying distribution Q of interest is the reweighting
distribution Q = QA(= QwA) where A ⊆ [p].

The rest of the section is organized as follows.

• We start with a general result (Proposition 5) that establishes the
uniform convergence of F (β;Qn) to F (β;Q) for a generic reweighting
distribution Q = Qw that satisfies the assumption Q (see below for
the definition of assumption Q). We wish that assumption Q clarifies
the essential property for the distribution Q to satisfy the uniform
convergence guarantee.

• We next show in Proposition 6 that any reweighting distribution Q =
QA where A ⊆ [p] satisfies the assumption Q.

• Finally, we combine the above results to establish the uniform conver-
gence of F (β;Qn) to F (β;Q) for any reweighting distribution Q = QA.

Here is the abstract assumption on the reweighting distribution Q that we
need in order to establish the uniform convergence result.

Assumption Q. Let Q = Qw be the (reweighting) distribution associated
with some weight function w(x, y). Assume the weight function w satisfies

• The weight function is bounded: 0 ≤ w(X,Y ) ≤ 1 under P.
• The class label is balanced after reweighting:

Q(Y = 0) = Q(Y = 1).

• For some constant % > 0, we have that

EB[w(X,Y )w(X ′, Y ′)] ≥ %2,

EW [w(X,Y )w(X ′, Y ′)] ≥ %2.

Here the expectation E is taken under measure P.

Notation. We wish to emphasize that throughout the section, the notation
E always stands for the expectation under the common probability measure
P (and not under the probability measure Q!). The reason is that we wish
to state and prove our results under a common measure P so that we can
easily relate results for different measures Q′,Q′′, . . .. The way to denote the
expectation under a reweighting disribution Q = Qw is to use the notation
Ew, where w is the weight function associated with Q.
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Proposition 5 is the main result of the section, which establishes a uniform
convergence result for a generic distribution Q satisfying assumption Q.

Proposition 5. Assume Assumptions (A1)-(A2). Then we have for
some constant C > 0 that depends only on b,M, %, f(0), f ′(0), f ′′(0) such
that for any probability distribution Q satisfying Assumption Q, we have

1. For any t > 0, with probability at least 1− p−t2 − e−n%2/32 under P,

sup
β∈B
|F (β;Qn)− F (β;Q)| ≤ C ·

√
log p

n
· (1 + t).

2. For any t > 0, with probability at least 1− p−t2 − e−n%2/32 under P,

sup
j∈[p]

sup
β∈B

∣∣∣∣ ∂∂βj F (β;Qn)− ∂

∂βj
F (β;Q)

∣∣∣∣ ≤ C ·
√

log p

n
· (1 + t).

Proposition 5 provides a uniform convergence result for a generic reweight-
ing distribution Q that satisfies Assumption Q. Below we study the uniform
convergence for some specific choices of Q. For any subset A ⊆ [p], recall the
reweighing distribution QA where dQA(x, y) ∝ dP (x, y) ·wA(x, y) and where
the weighting function wA is defined by

wA(x, y) = 1− P(Y = y | XA = xA).

Proposition 6 shows that the reweighting distribution QA satisfies Assump-
tion Q under Assumption (A3). We defer the proof to Section J.3.

Proposition 6. Assume Assumption (A3). Then for any set A ⊆ [p],
the reweighting function wA (x, y) = 1− P (Y = y|XA = x) satisfies

1. The weight function is bounded: 0 ≤ wA(X,Y ) ≤ 1 under P.
2. The class label is balanced after reweighting:

QA(Y = 0) = QA(Y = 1)

3. For the constant % > 0 in the statement of Assumption (A3), we have

EB
[
wA (X,Y )wA

(
X ′, Y ′

)]
≥ %2,

EW
[
wA (X,Y )wA

(
X ′, Y ′

)]
≥ %2.

(112)

In above, the expectation E is taken under the probability measure P.
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Proposition 5 and Proposition 6 immediately yield Corollary J.1 below.

Corollary J.1. Assume Assumptions (A1)-(A3). There exists a con-
stant C > 0 that depends only on b,M, %, f(0), f ′(0), f ′′(0) such that for any
subset A ⊆ [p], we have

1. For any t > 0, with probability at least 1− p−t2 − e−n%2/32 under P,

sup
β∈B

∣∣F (β;QA
n )− F (β;QA)

∣∣ ≤ C ·√ log p

n
· (1 + t).

2. For any t > 0, with probability at least 1− p−t2 − e−n%2/32 under P,

sup
j∈[p]

sup
β∈B

∣∣∣∣ ∂∂βj F (β;QA
n )− ∂

∂βj
F (β;QA)

∣∣∣∣ ≤ C ·
√

log p

n
· (1 + t).

J.2. Proof of Proposition 5. Let Q be any probability measure that
satisfies Assumption Q. Let w(x, y) ∝ dQ

dP (x, y) denote the weight function
associated with Q so that Q = Qw and that weight function w satisfies the
conditions in the Assumption Q.

To start with, we compute

|F (β;Qn)− F (β;Q)| =
∣∣∣(Êwn,B−W − EwB−W )[f(〈β,d〉)]

∣∣∣∣∣∣∣ ∂∂βj F (β;Qn)− ∂

∂βj
F (β;Q)

∣∣∣∣ =
∣∣∣(Êwn,B−W − EwB−W )[dj · f ′(〈β,d〉)]

∣∣∣
By triangle inequality, we obtain

|F (β;Qn)− F (β;Q)| ≤ ε̄n,B(β) + ε̄n,W (β)∣∣∣∣ ∂∂βj F (β;Qn)− ∂

∂βj
F (β;Q)

∣∣∣∣ ≤ εn,B,j(β) + εn,W,j(β)
(113)

where we define the empirical deviations

ε̄n,B(β) =
∣∣∣(Êwn,B − EwB)[f(〈β,d〉)]

∣∣∣
ε̄n,W (β) =

∣∣∣(Êwn,W − EwW )[f(〈β,d〉)]
∣∣∣

εn,B,j (β) =
∣∣∣(Êwn,B − EwB)

[
dj · f ′ (〈β,d〉)

]∣∣∣ .
εn,W,j (β) =

∣∣∣(Êwn,W − EwW )
[
dj · f ′ (〈β,d〉)

]∣∣∣ .
(114)
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Following equation (113), the key to the proof is to provide high proba-
bility upper bounds onto the following (random) quantities

sup
β∈B

ε̄n,B(β), sup
β∈B

ε̄n,W (β), sup
j∈[p]

sup
β∈B

εn,B,j(β), sup
j∈[p]

sup
β∈B

εn,W,j(β).

Lemma J.1 does this technical work, whose proof, which is based on the
empirical process theory, is deferred to Section J.2.1.

Lemma J.1. Assume Assumptions (A1)–(A2). Assume w(x, y) satisfies

• The weight function is 0 ≤ w(X,Y ) ≤ 1.
• For some constant % > 0, we have that

EB[w(X,Y )w(X ′, Y ′)] ≥ %2,

EW [w(X,Y )w(X ′, Y ′)] ≥ %2.

Let g, h be two functions that satisfy

• x 7→ g(x) is Lipschitz with Lipschitz constant L.
• x 7→ |g(x)| is upper bounded by G for all x ∈ [0, 2Mb].
• x 7→ |h(x)| is upper bounded by H for all x ∈ [0,M ].

Consider the two random functions:

δn,W,j(β) =
∣∣∣(Êwn,W − EwW ) [g(〈β,d〉) · h(dj)]

∣∣∣
δn,B,j(β) =

∣∣∣(Êwn,W − EwW ) [g(〈β,d〉) · h(dj)]
∣∣∣(115)

There exists some constant C > 0 that depends only on G,H,L, b,M, % such
that we have with probability at least 1− p−t2 − e−n%2/32,

sup
β∈B

(δn,B,j (β) + δn,W,j (β)) ≤ C ·
√

log p

n
· (1 + t).(116)

We apply Lemma J.1 to two specific groups of choice of (g, h).

• We first specify g(x) = f(x) and h(x) ≡ 1. Note that f is f ′(0) Lips-
chitz since f ′ is completely monotone. Lemma J.1 implies with proba-
bility at least 1− p−t2 − e−n%2/32 under P,

sup
β∈B

(ε̄n,B (β) + ε̄n,W (β)) ≤ C ·
√

log p

n
· (1 + t),

where C > 0 is a constant that depends only on b,M, %, f(0), f ′(0).
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• We next specify g(x) = f ′(x) and h(x) = x. Note that f ′ is |f ′′(0)|
Lipschitz since f ′ is completely monotone. Lemma J.1 implies with
probability at least 1− p−t2 − e−n%2/32 under P,

sup
j∈[p]

sup
β∈B

(εn,B,j (β) + εn,W,j (β)) ≤ C ·
√

log p

n
· (1 + t).

where C > 0 is a constant that depends only on b,M, %, f ′(0), f ′′(0).

Proposition 5 now follows straightforwardly from the previous discussions.

J.2.1. Proof of Lemma J.1. For simplicity, we slightly modify the defini-
tion of the empirical average Êwn,B and Êwn,W in the proof below. Concretely,
we define for any function h(x, x′, y, y′)

Ên,B[h(X,X ′, Y, Y ′)] =

∑
i 6=i′ w(Xi, Yi)w(Xi′ , Yi′)h(Xi, Xi′ , Yi, Yi′)1Yi 6=Yi′∑

i 6=i′ w(Xi, Yi)w(Xi′ , Yi′)1Yi 6=Yi′

Ên,W [h(X,X ′, Y, Y ′)] =

∑
i 6=i′ w(Xi, Yi)w(Xi′ , Yi′)h(Xi, Xi′ , Yi, Yi′)1Yi=Yi′∑

i 6=i′ w(Xi, Yi)w(Xi′ , Yi′)1Yi=Yi′
.

(117)

The only difference between the new definition above and the original defi-
nition in the main text is that, while the original definition sums over all
possible tuples (i, i′) on the RHS where 1 ≤ i, i′ ≤ n, the new defini-
tion only sums over all possible distinct tuple (i, i′) where 1 ≤ i, i′ ≤ n
and i 6= i′. One important claim is that such modification doesn’t change
qualitatively the uniform convergence result (and it can only change the
numerical constants in the high probability bound). The reason why this
is true is largely due to the fact that the weight w(x, y) and the function
h(x, x′, y, y′) = g(〈β,d〉) · h(dj) of interest is bounded—0 ≤ w(x, y) ≤ 1
and |h(x, x′, y, y′)| ≤ GH by assumption—so summing over all tuples (i, i′)
versus summing over all distinct tuples (i, i′) do not make a real difference.
The formal proof of this claim is tedious (simple, lengthy, but not insightful)
and thus omitted.

In the proof below, we will work under this definition of Êwn,B and Êwn,W ,
and still the random quantities of interest are defined by

δn,W,j(β) =
∣∣∣(Êwn,W − EwW ) [g(〈β,d〉) · h(dj)]

∣∣∣
δn,B,j(β) =

∣∣∣(Êwn,W − EwW ) [g(〈β,d〉) · h(dj)]
∣∣∣(118)
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We prove for any fixed j ∈ [p], with probability at least 1− p−t2 − e−n%2/32,

sup
β∈B

δn,B,j(β) ≤ C ·
√

log p

n
· (1 + t).(119)

holds for some large constant C > 0 depending on G,H,L, b,M, %. An analo-
gous high probability bound also holds for δn,W,j(β). Together, with a union
bound, this proves Lemma J.1 as desired.

Now we show equation (119) holds with probability at least 1 − p−t2 −
e−n%

2/32. Fix j ∈ [p]. We introduce notational shorthand to simplify the
proof below. We use Zi = (Xi, Yi) to denote the i.i.d data pair. Introduce

rβ(zi, z
′
i) = g (〈β,d〉) · h(dj)

w(zi, z
′
i) = 1yi 6=yi′w(zi)w(zi′)

qβ(zi, z
′
i) = rβ(zi, z

′
i)w(zi, z

′
i)

where w(zi) is the weight. Let Ên denote the empirical average over all the
n(n− 1) distinct tuples (i1, i2). By definition of Êwn,B,EwB,

Êwn,B[hβ(z, z′)] =
Ên[qβ(z, z′)]

Ên[w(z, z′)]
and EwB[hβ(z, z′)] =

E[qβ(z, z′)]

E[w(z, z′)]
.

Hence, we have the identity

(120) sup
β∈B

δn,B,j(β) = sup
β∈B

∣∣∣∣∣ Ên[qβ(z, z′)]

Ên[w(z, z′)]
−

E[qβ(z, z′)]

E[w(z, z′)]

∣∣∣∣∣ .
Now we use the elementary inequality: for a, a′, b, b′ ∈ R,∣∣∣∣ ba − b′

a′

∣∣∣∣ ≤ 1

|aa′|
(
|a− a′||b′|+ |b− b′||a′|

)
Applying this inequality to equation (120), we obtain the bound

(121) sup
β∈B

δn,B,j(β) ≤ 1

Γn
(∆1,n + ∆2,n)

where

Γn = Ên[w(z, z′)] · E[w(z, z′)]

∆1,n = E[w(z, z′)] · sup
β∈B

∣∣∣(Ên − E)[qβ(z, z′)]
∣∣∣

∆2,n =
∣∣∣(Ên − E)[w(z, z′)]

∣∣∣ · sup
β∈B

E[qβ(z, z′)]
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To obtain high probability upper bound on supβ∈B δn,B,j(β), it suffices to
derive a high probability lower bound on Γn and upper bound on ∆1,n,∆2.n.
The following three technical lemma are useful towards this end.

Lemma J.2. We have with probability at least 1− e−4t2:∣∣∣(Ên − E)[w(z, z′)]
∣∣∣ ≤√ 1

n
· t.

Proof. Note that the weights 0 ≤ w ≤ 1 by assumption. The lemma is a
consequence of Hoeffding’s inequality for U-statistics (see Lemma O.1).

Lemma J.3. We have with probability at least 1− e−n%2/32:

Ên[w(z, z′)] ≥ 1

2
%.

Proof. By assumption, 0 ≤ w ≤ 1 and E[w(z, z′)] ≥ %. The lemma is a
consequence of Bernstein’s inequality for U-statistics (see Lemma O.1).

Lemma J.4. For any β ∈ B, we have

sup
z,z′

∣∣qβ(z, z′)
∣∣ ≤ GH.

Proof. Assumption (A2) gives 0 ≤ dj ≤ 2M for all j ∈ [p], and moreover
gives 0 ≤ 〈β,d〉 ≤ 2Mb for all β ∈ B by Hölder’s inequality. Assumption Q
gives 0 ≤ w ≤ 1. Thus, we have for all β ∈ B,

sup
z,z′
|qβ(z, z′)| ≤ GH.

This completes the proof of Lemma J.4.

Lemma J.5. We have with probability at least 1− p−t2:

sup
β∈B

∣∣∣(Ên − E)[qβ(z, z′)]
∣∣∣ ≤ C√ log p

n
· (1 + t).

In above C is a constant depending only on b,M,L,G,H.

We provide the proof of Lemma J.5 into Section J.2.2.
Now we give high probability upper bound on supβ∈B δn,B,j(β) using equa-

tion (121). By Lemma J.2, Lemma J.4 and Lemma J.5, the bound below

∆1,n ≤ C ·
√

log p

n
· (1 + t), ∆2,n ≤ C ·

√
log p

n
t
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holds with probability at least 1 − 2p−t
2 , where C > 0 is some constant

depending only on b,M,L,G,H. Recall Assumption Q: E[w(z, z′)] ≥ %2.
Thus Lemma J.3 further implies

Γn ≥ E[w(z, z′)] · Ên[w(z, z′)] ≥ 1

2
%4.

with probability at least 1−e−n%2/32. Substitute the high probability bounds
into equation (121). We get with probability at least 1− 2p−t

2 − e−n%2/32,

sup
β∈B

δn,B,j(β) ≤ C ·
√

log p

n
· (1 + t).

where C > 0 is a constant that depends on b,M, %, L,G,H. This completes
the proof of Lemma J.1.

J.2.2. Proof of Lemma J.5. Let’s denote the random variable

W = sup
β∈B

∣∣∣(Ên − E)[qβ(z, z′)]
∣∣∣ .

We view W ≡ W (Z1:n) as a function of the i.i.d data pair Zi = (Xi, Yi).
Lemma J.4 implies that this function is of bounded difference with bound
2GH/n, i.e., for any Z1:n and Z ′1:n differing in only one coordinate,∣∣W (Z1:n)−W (Z ′1:n)

∣∣ ≤ 2GH

n
.

Thus, McDiarmid’s bounded difference inequality [9] gives

(122) W ≤ E[W ] + 2GH ·
√

log p

n
· t

holds with probability at least 1− p−t2 .
Now, we bound E[W ]. On a high level, our idea works as follows: viewing

W as the suprema of some empirical process, we symmetrize W and bound
the resulting Rademacher complexity with the Ledoux-Talagrand contraction
inequality [6]. Formally, we decompose

qβ(z, z′) = φ
(
〈β,d〉, z, z′

)
+ φ̄

(
z, z′

)
,

where (z, z′) 7→ φ̄(z, z′) and (u, z, z′) 7→ φ(u, z, z′) are defined by

φ̄
(
z, z′

)
= w(z, z′) · g(0) · h(dj)

φ(u, z, z′) = w(z, z′) · (g(u)− g(0)) · h(dj).
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We emphasize that the definition of the two functions φ and φ̄ are indepen-
dent of β ∈ B. By triangle inequality, we can upper bound

(123) E[W ] ≤ E[W1] + E[W2]

where W1 and W2 are the supremum of some empirical process:

W1 =
∣∣∣(Ên − E)[φ̄(z, z′)]

∣∣∣ and W2 = sup
β∈B

∣∣∣(Ên − E)[φ(〈β,d〉, z, z′)]
∣∣∣ .

Below we bound E[W1] and E[W2] separately. Our major technique is to use
symmetrization argument followed by Hoeffding [5] and Ledoux-Talagrand
contraction inequality [6]. As both W1 and W2 involve averages of dependent
random variables, standard symmetrization argument does not immediately
apply, for which reason we adapt a decoupling technique that is due to Ho-
effding [5] to overcome this technical difficulty. We introduce the notation.

• Let σi,i′ be independent Rademacher random variables.
• Let φ̄(i,i′) = φ̄ (zi, z

′
i) and φ(i,i′)(u) = φ (u, zi, z

′
i).

• Let I = {(i, i′) | i 6= i′, 1 ≤ i, i′ ≤ n}. A simple combinatorial argument
shows that we can decompose I = ∪Ij=1Ij where I ≤ n, |Ij | ≥

⌊
n
2

⌋
, and

where for any two different tuples (i1, i2), (i3, i4) ∈ Ij where j ∈ [I],
we have ik 6= il for 1 ≤ k < l ≤ 4. For each j ∈ [I], let Ên,j denote the
empirical average over the distinct tuples (i1, i2) ∈ Ij .

Part 1: Bound on E[W1]. As I = ∪Ij=1Ij , we have by triangle inequality

E[W1] ≤ 1

I

I∑
j=1

E
[∣∣(Ên,j − E)[φ̄(z, z′)]

∣∣] ≤ max
j∈[I]

E
[∣∣(Ên,j − E)[φ̄(z, z′)]

∣∣]
(124)

Now for each j ∈ [I], Ên,j [φ̄(z, z′)] is the average of independent random
variables. Invoking the standard symmetrization argument, we obtain

(125) E[W1] ≤ 2 max
j∈[I]

E

Eσ
[

1

|Ij |

∣∣∣ ∑
(i,i′)∈Ij

σi,i′ φ̄i,i′
∣∣∣ | Z]

 .

Note then supi,i′ |φ̄i,i′ | ≤ GH since we have by assumption 0 ≤ w(z, z′) ≤
1, |g(0)| ≤ G and supx∈[0,M ] |h(x)| ≤ H. As {σi,i′}i 6=i′ are independent 1-
subgaussian random variables, we obtain the bound for all j:

(126) Eσ
[

1

|Ij |

∣∣∣∑
i 6=i′

σi,i′ φ̄i,i′
∣∣∣ | Z] ≤ GH ·√ 1

|Ij |
≤ 2GH ·

√
1

n
.
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Substituting equation (126) into equation (125) yields the final bound

(127) E[W1] ≤ 4GH ·
√

1

n
.

Part 2: Bound on E[W2]. Similar to equation (124), we have

E[W2] ≤ max
j∈[I]

sup
β∈B

∣∣∣(Ên,j − E)[φ(〈β,d〉, z, z′)]
∣∣∣ .

Now for each j ∈ I, Ên,j [φ(〈β,d〉, z, z′)] is the average of independent random
variables. Invoking the standard symmetrization argument, we obtain

(128) E[W2] ≤ 2 max
j∈[I]

E

Eσ

sup
β∈B

∣∣∣∣ 1

|Ij |
∑

(i,i′)∈Ij

σi,i′ · φi,i′ (〈β,d〉)
∣∣∣∣|Z
 .

The inner expectation is over σi,i′ with the data Z (all data zi) fixed while
the outer expectation is over Z. Now for any fixed zi, z′i, since we have∣∣∣∣ dduφ(u, zi, z

′
i)

∣∣∣∣ =
∣∣w(zi, z

′
i) · h(dj) · g′(u)

∣∣ ≤ LH.
the mapping u → φi,i′(·, zi, z′i) is Lipschitz with constant LH. Note further
that φi,i′(0, zi, z′i) = 0. Hence, conditional on d, we may apply the Ledoux-
Talagrand contraction [6] inequality to obtain the following upper bound

Eσ

sup
β∈B

∣∣∣∣ 1

|Ij |
∑

(i,i′)∈Ij

σi,i′ · φi,i′ (〈β,d〉)
∣∣∣∣|Z


≤ 2LH · Eσ

sup
β∈B

∣∣∣∣ 1

|Ij |
∑

(i,i′)∈Ij

σi,i′ 〈β,d〉
∣∣∣∣|Z
 .

(129)

To further bound the RHS, we notice the two key facts

• {σi,i′}i 6=i′ are mutually independent 1-subgaussian random variables.
• The `∞ bound on ‖d‖∞ ≤M which is due to Assumption (A2).
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Using the above facts, we can easily obtain the further bound

Eσ

sup
β∈B

∣∣∣∣ 1

|Ij |
∑

(i,i′)∈Ij

σi,i′ 〈β,d〉
∣∣∣∣|Z


= Eσ

 sup
β∈Rp+:‖β‖1≤b

∣∣∣∣〈β, 1

|Ij |
∑

(i,i′)∈Ij

σi,i′d
〉∣∣∣∣|Z


= b · Eσ

∣∣∣∣ 1

|Ij |
∑

(i,i′)∈Ij

σi,i′ · d
∣∣∣∣
∞
|d

 ≤ 2Mb

√
log p

|Ij |
,

(130)

Consequently, equations (128)–(130) yield the final bound

(131) E[W2] ≤ 4MbLH ·
√

log p

n
.

Summary. Back to equation (122). We use equations (123), (127) and (131)
to conclude the following: for any t > 0, with probability at least 1− p−t2 .

(132) Q ≤ 8(2MbLH +GH) ·
√

log p

n
· (1 + t)

J.3. Proof of Proposition 6. The first part of Proposition 6 is trivial.
The second part of Proposition 6 follows from the identity

QA(Y = 1) = E[wA(X, 1)wA(X, 0))] = QA(Y = 0),

and this identity can be proven easily by using the law of iterated expec-
tation. Below, we prove the third part of Proposition 6. That is, under As-
sumption (A3), we have equation (112) holds.

Write π(XA) = P(Y = 1 | XA). Recall that Y | X = Y | XS . The proof is
based on a fundamental inequality that holds for any set A:

(133) E[π(XA) | Y = 0] ≥ E[π(XS) | Y = 0].

To obtain this result, we note first for any set A:

E[π(XA) | Y = 0] =
1

P(Y = 0)
E[π(XA)1Y=0]

=
1

P(Y = 0)
E[π(XA)(1− π(XA))]

=
1

P(Y = 0)
E[Var(Y | XA)].

(134)
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Next, for any set A, we have

(135) Var(Y | XA) ≥ E[Var(Y | XS∪(A\S)) | XA] = E[Var(Y | XS) | XA].

where the inequality follows from the conditional variance decomposition
and the equality from Y |X = Y |XS . Substituting it into equation (134), we
obtain the desired inequality (133)

E[π(XA) | Y = 0] =
1

P(Y = 0)
E[Var(Y | XA)]

≥ 1

P(Y = 0)
E[Var(Y | XS)] = E[π(XS) | Y = 0]

In the same way, one can show for any set A,

E[(1− π(XA)) | Y = 1] ≥ E[(1− π(XS)) | Y = 1]

This shows for any set A:

EB[wA(X,Y )wA(X ′, Y ′)] = E[π(XA)(1− π(X ′A)) | Y = 0, Y ′ = 1]

= E[π(XA) | Y = 0] · E[(1− π(XA)) | Y = 1]

≥ E[π(XS) | Y = 0] · E[(1− π(XS)) | Y = 1]

≥ %2,

where the first inequality uses our previous results. One can prove analo-
gously the bound EW [wA(X,Y )wA(X ′, Y ′)] ≥ %2.

APPENDIX K: PROOF OF NO FALSE DISCOVERY IN LOW
DIMENSION

This section presents the proof of Theorem 2. The fundamental mathe-
matical tool that underlies the proof of Theorem 2 is Proposition 4 (for false
positive control) and Proposition 5 (for recovery). Proposition 4 basically
shows that the gradient with respect to a noise variable Xj where j ∈ Sc is
negative, and its magnitude is lower bounded by the (square of the) objective
value. This causes the self-penalization—the larger the objective value, the
stronger the penalization on the noise variable. The recovery guarantee is a
careful extension of the population recovery result in Proposition 5.

K.1. Notation. Consider the metric learning algorithm. Let Q(1),Q(2),
. . . ,Q(k), . . . denote the sequence of the weighting distribution, and Ŝ(1), Ŝ(2),
. . . , Ŝ(k), . . . denote the set of variables selected by the algorithm through the
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iterations. By convention, we define Ŝ(0) = ∅. Note then Ŝ =
⋃
k Ŝ

(k) is the
final output of the algorithm.

On population, we use {β(m;Q(k))}m∈N to denote the inner-loop projected
gradient ascent iterates that solve the population maximization problem

max
β∈B

F (β;Q(k))

We use β(∗;Q(k)) to denote the accumulation point that’s returned from the
gradient ascent inner-loop. This means in particular on population

Ŝ(k+1) = Ŝ(k) ∪ supp(β(∗;Q(k))).

In finite case, we use {β(m;Q(k)
n )}m∈N to denote the inner-loop projected

gradient ascent iterates that solve the empirical maximization problem

max
β∈B

F (β;Q(k)
n )

We use β(∗;Q(k)
n ) to denote the accumulation point that’s returned from the

gradient ascent inner-loop. This means in particular in finite case

Ŝ(k+1) = Ŝ(k) ∪ supp(β(∗;Q(k)
n )).

We sometimes drop the dependence of the gradient ascent iterates on the
probability measure Q. This means that we may refer β(m) to β(m;Q(k)), and
refer β(∗) to β(∗;Q(k)) when the context is clear.

K.2. Proof of Theorem 2. The key to the proof is the following propo-
sition, whose proof is deferred into Section K.3.

Proposition 7. Let A ⊆ S. Consider the optimization problem:

(136) max
β:β∈B

F (β;QA
n ).

Let {β(m)}m∈N denote the projected gradient ascent iterates with initialization
at β(0) and stepsize α. Then there exists some constant C > 0 that depends
only on b,M, q, %, f(0), f ′(0), f ′′(0) such that the following holds: for any
t > 0, any choice of the stepsize α ≤ 1

C·p , and any choice of the threshold

(137) γ > C ·
√

log p

n
· (1 + t),

we have with probability at least 1− 2(p−t
2

+ e−n%
2/32) such that at least one

of the following two happens:
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• the initialization condition (F (β(0);QA
n ))2 > γ fails

• any accumulation point β∗ of the projected gradient iterates satisfies

(138) supp(β(∗)) ⊆ S.

We are now ready to show that Ŝ ⊆ S holds with high probability. Fix
t > 0 in the statement of Theorem 2. Let EA denote the event that’s stated in
Proposition 7. Let E = ∩A:A⊆SEA denote the event where all events EA where
A ⊆ S happens. By Proposition 7 and the union bound, we understand with
appropriate choice of constant C > 0 in the definition of E ,

(139) P(E) ≥ 1− 2s+1(p−t
2

+ e−n%
2
).

Below, we show on the event E that the following happens:

(140) Ŝ(k) ⊆ S holds for all k ∈ N.

Note we define by convention Ŝ(k) = Ŝ for any k > T where T is the total
number of iterations after which the algorithm halts. Our proof is based on
induction on m ∈ N. Below we assume we are on the event E .

• The base case where m = 0 trivially holds since Ŝ0 = ∅.
• Assume the induction hypothesis holds for m = k, i.e., Ŝ(k) ⊆ S.

Consider the case where m = k + 1. We aim to show that Ŝ(k+1) ⊆ S.
Below we divide our discussion into two cases:

(i) If the initialization condition (F (β(0);Q(k)
n ))2 > γ holds, then we

run the gradient ascent to solve the maximization problem

max
β∈B

F (β;Q(k)
n ).

By definition of the event E , we know that the output from the
gradient ascent algorithm must satisfy

supp
(
β(∗;Q(k)

n )
)
⊆ S.

Consequently, this shows that, the output Ŝ(k+1) satisfies

Ŝ(k+1) = Ŝ(k) ∪ supp
(
β(∗;Q(k)

n )
)
⊆ S.

(ii) If the initialization condition (F (β(0);Q(k)
n ))2 > γ fails, then the

algorithm halts at this iteration. As a result, we obtain

Ŝ(k+1) = Ŝ ⊆ S.
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Summarizing the above discussions, we have shown that Ŝ(k+1) ⊆ S.
This proves that the hypothesis holds for m = k + 1.

As such, we have shown that Ŝ ⊆ S on the event E . This happens with
probability at least 1− 2s+1(p−t

2
+ e−n%

2/32), thanks to equation (167).

K.3. Proof of Proposition 7. The key to the proof is to establish the
following result.

Claim 2. There exists some constant C > 0 that depends only on the
parameters b,M, q, %, f(0), f ′(0), f ′′(0) such that the following holds: for any
t > 0, for any choice of the stepsize α ≤ 1

C·p , and any threshold γ satisfying

(141) γ ≥ C ·
√

log p

n
· (1 + t),

we have for some constant ε > 0 independent of m (but can be dependent on
the rest of the parameters, e.g., p, n, α, C) such that, with probability at least
1− 2(p−t

2
+ e−n%

2/32), the gradient ascent iterate satisfies

(142) β
(m+1)
j ≤

(
β

(m)
j − ε

)
+

for all j ∈ Sc and all m ∈ N

as long as the initialization condition (F (β(0);QA
n ))2 > γ holds.

Once we can show this, then it is immediate that there exists a constant
C > 0 such that for any t > 0, any threshold γ satisfying equation (141),
one of the following two events must happen

• The initialization condition (F (β(0);QA
n ))2 > γ fails

• The initialization condition (F (β(0);QA
n ))2 > γ holds. Then by the

claim 2, we know with probability at least 1 − 2(p−t
2

+ e−n%
2/32) any

accumulation point β(∗) of the iterate {β(m)}m∈N must satisfy

(143) supp(β(∗)) ⊆ S.

Below we prove Claim 2. Our strategy is to first prove that the Claim
holds on population (n = ∞), and then extend the result to finite sample
case (n <∞) by standard techniques on concentration and perturbation.

Population Analysis n =∞. Below we prove that equation (142) holds with
probability one for some constant ε > 0 when the constant C > 0 (stated
in Claim 2) is sufficiently large. The key to showing this is Proposition 4.
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By Proposition 4, we have for some constant c > 0 that depends only on
f, q,M, b, ζ such that for any β ∈ Rp+ and any variable j ∈ Sc,

(144)
∂

∂βj
F (β;QA) ≤ −c · (F (β;QA))2.

We wish to emphasize that, in using Proposition 4, we implicitly use the fact
that our choice of the weighting distribution QA maintains the distributional
property Y | X = Y | XS and XS ⊥ XSc thanks to Proposition 3. Note that
equation (144) basically says that the gradient with respect to a noise variable
Xj at any β is negative, and, moreover the absolute value of the negative
gradient is lower bounded by the square of the objective. In conjunction with
the projection Lemma O.2, this implies for the same constant c > 0, we have

β
(m+1)
j = ΠB

(
β

(m)
j + α · ∂

∂βj
F (β

(m)
j ;QA)

)
≤
(
β

(m)
j − α · c · (F (β(m);QA))2

)
+

(145)

To show the desired result, i.e., equation (142) holds for some constant ε > 0
independent of m ∈ N, it remains to show the lower bound

(146) F (β(m);QA) ≥ F (β(0);QA) for all m ∈ N.

Indeed, once we have equations (145) and (146), then it is immediate that
equation (142) holds for the constant ε = α · c · F (β(0);QA)2 ≥ αcγ > 0.

Below we prove equation (146) holds when the constant C > 0 (stated
in Claim 2) is sufficiently large. To do so, we invoke the very basic prop-
erty of the projected gradient ascent algorithm—that is, the objective value
increases monotonically along the iterates when the stepsize is sufficiently
small. More precisely, by Lemma O.4, it suffices to show the stepsize α ≤ 1/L,
where L is the Lipschitz constant of the gradient of the objective (with re-
spect to ‖·‖2 norm). Lemma K.1 upper bounds L ≤ |f ′′(0)|Mp where M =
(2M)q. Hence, the stepsize α ≤ 1

C·p ≤ 1/L when C > |f ′′(0)|M̄ , and there-
fore m 7→ F (β(m);QA) is monotonically increasing thanks to Lemma O.4.
This proves equation (146).

Finite Sample Analysis n < ∞. Here we extend the above analysis to the
finite sample case where n <∞. The proof here is similar to that of n =∞—
the major difference is that we need to substitute the population objective
and gradient by the empirical ones. For this reason, the key to extending the
proof to finite case n <∞ is to bound the difference between the population
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and empirical objectives and gradients uniformly over β ∈ B. Fortunately,
Corollary J.1 provides such high probability bounds.

According to Corollary J.1, we have for some constant C̄ > 0 depending
only on the parameters b,M, %, f(0), f ′(0), f ′′(0) such that

• we have with probability at least 1− p−t2 − e−n%2/32,

(147) sup
β∈B

∣∣F (β;QA
n )− F (β;QA)

∣∣ ≤ C̄ ·√ log p

n
· (1 + t)

• we have with probability at least 1− p−t2 − e−n%2/32,

sup
j∈[p]

sup
β∈B

∣∣∣∣ ∂∂βj F (β;QA
n )− ∂

∂βj
F (β;QA)

∣∣∣∣ ≤ C̄ ·
√

log p

n
· (1 + t).(148)

Let Λ denote the event on which both equations (147) and (148) hold. We
prove that equation (142) holds on the event Λ, provided that C > 0 (stated
in Claim 2) is sufficiently large, and γ satisfyies equation (137).

Since the proof is essentially the same as before, we only briefly describe
the major steps, leaving the details to the reader. In the discussions below,
we assume we are on the event Λ. First, equation (147) implies that

(149) sup
β∈B

∣∣F 2(β;QA
n )− F 2(β;QA)

∣∣ ≤ 2C̄ · |f(0)| ·
√

log p

n
· (1 + t)

as both F (β;QA
n ) and F (β;QA) are uniformly bounded by |f(0)| when β ∈

B. Consequently, by equations (144), and (148) and (149) and the triangle
inequality, we can obtain for all β ∈ B and all j ∈ Sc:

∂

∂βj
F (β;QA

n ) ≤ −c · (F (β;QA
n ))2 + C ′ ·

√
log p

n
· (1 + t)(150)

where we define the constant C ′ = (1 + c) · C̄ · |f(0)| > 0. Next, by equa-
tion (150), and the projection Lemma O.2, we can obtain for all t ∈ N and
j ∈ Sc:

β
(m+1)
j ≤

(
β

(m)
j − α ·

(
c · (F (β(t);QA

n ))2 − C ′ ·
√

log p

n
· (1 + t)

))
+

(151)

Finally, by using the same strategy as proving equation (145), we obtain

(152) F (β(m);QA
n ) ≥ F (β(0);QA

n ) for all m ∈ N
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when the constant C > 0 (stated in Claim 2) is sufficiently large. Hence,
equations (151) and (152) together imply that, on the event Λ, the desired
equation (142) holds for the constant

(153) ε = α ·

(
c · (F (β(0);QA

n ))2 − C ′ ·
√

log p

n
· (1 + t)

)
.

Since (F (β(0);QA
n ))2 ≥ γ by assumption, the constant ε ≥ 1

2αcγ > 0 if the

condition γ > C
√

log p
n (1 + t) holds and C > 0 is sufficiently large.

Lemma K.1. Let f ∈ C∞(R+) be such that f ′ is completely monotone.
Assume that ‖X‖∞ ≤ M under Q. Then, both the population objective
F (β;Q) and the empirical objective F (β;Qn) has Lipschitz gradient with
Lipschitz constant L ≤ |f ′′(0)|Mp where M = (2M)q.

Proof. We only prove the result for the population objective F (β;Q)
(the proof for F (β;Qn) is essentially the same). To start with, note for j ∈ [p],

∂

∂βj
F (β;Q) = EwB−W

[
dj · f ′(〈β,d〉)

]
.

As ‖d‖∞ ≤ M , we obtain that β 7→ 〈β,d〉 is M√p Lipschitz. Since f ′ is
completely monotone, it is Lipschitz with constant |f ′′(0)|. Consequently,
we have shown that β 7→ ∂

∂βj
F (β;Q) is |f ′′(0)|M√p Lipschitz, and hence

β 7→ ∇F (β;Q) is Lipschitz with Lipschitz constant L ≤ |f ′′(0)|Mp.

K.4. Discussion on Early Stopping of Gradient Ascent. The proof
of Theorem 2 suggests that we can still achieve the high probability no-false-
positive guarantees if we modify the algorithm to perform an early stopping
on the inner-loop gradient ascent iterates. Indeed, the proof of Theorem 2,
and in particular, the proof of Claim 2 shows that with high probability the
inner-loop gradient ascent iterates satisfy for all noise variable j:

β
(m)
j+1 ≤

(
β

(m)
j − c · α ·

√
log p

n

)
+

for some constant c > 0 that is independent of p, n, provided that α ≤ 1
C·p for

some large constant C > 0 independent of p. Hence, if the initialization β(0)

has coordinates on the order of 1
p (say β(0) = b

p1) and the stepsize α = Ω(1
p),

then with constant number of iteration m′ (here constant means the number
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of iteration m′ is independent of p), the gradient ascent iteration will reach a
point where βm′j = 0 for all noise variable j. Performing such early stopping
will significantly reduce the computation cost, while maintaining the statisti-
cal no-false-positive control. One thing that really deserves attention is that
there is also the signal recovery guarantees when the stepsize α = Ω(1

p) (see
the low-dimensional recovery result; Theorem 4).

APPENDIX L: PROOF OF RECOVERY GUARANTEE IN LOW
DIMENSION

This section presents the proof of Theorem 4. The proof is based on a
careful (and not trivial) extension of the proof of the recovery guarantee of
the population algorithm studied in Proposition 5.

L.1. Notation. This section uses exactly the same notation as appeared
in the previous Section K (see Section K.1).

L.2. Proof of Theorem 4. We prove that, with probability at least
1 − 2s(p−t

2
+ e−n%

2/32), the output Ŝ satisfies Y | XŜ = Y | XS . The
key to the proof is the following proposition, whose proof is deferred into
Section L.3.

Proposition 8. Let A ⊆ S be such that Y | XA 6= Y | XS. Consider
the optimization problem:

max
β:β∈B

F (β;QA
n ).

Let {β(m)}m∈N denote the projected gradient ascent iterates with initialization
at β(0) and stepsize α. Then there exists some constant C > 0 that depends
only on the parameters b,M, q, %, f(0), f ′(0), f ′′(0) such that the following
holds: for any t > 0, any choice of the stepsize α ≤ 1

C·p , and any choice of
the threshold γ that satisfies

γ ≥ C ·
√

log p

n
· (1 + t),

then if the following initialization condition holds (on population):

(
F (β(0);QA)

)2
> γ + C ·

√
log p

n
· (1 + t).

then we have with probability 1− (p−t
2

+ e−n%
2/32) the following two happen:

• the initialization condition (F (β(0);QA
n ))2 > γ holds
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• any accumulation point β∗ of the projected gradient iterates satisfies

(154) supp(β(∗))\A 6= ∅.

We are now ready to show that Ŝ satisfies Y | XŜ = Y | XS with high
probability. Fix t > 0 in the statement of Theorem 4. Let EA and E ′A denote
the event that’s stated in Proposition 7 and Proposition 8 respectively. Let
E = ∩A:A⊆SEA and E ′ = ∩A:A⊆SE ′A. By Proposition 7 and Proposition 8 and
the union bound, we understand with the appropriate choice of constant
C > 0 in the definition of E , E ′, we have

(155) P(E ∩ E ′) ≥ 1− 2s+2(p−t
2

+ e−n%
2
).

Fix the constant C > 0. Suppose the following condition holds:

inf
A:A⊆S,Y |XA 6=Y |XS

(
F (β(0);QA)

)2
≥ γ + C ·

√
log p

n
· (1 + t).

Below we show under this condition, and on the event E ∩ E ′, the algorithm
does not halt until it finds Ŝ such that Y | XŜ = Y | XS . Our reasoning is
based on the following points.

• By the same analysis in the proof of Theorem K (see Section K.2), we
understand on the event E , the algorithm does not over-select noise
variables, i.e.,

Ŝ(k) ⊆ S holds for all k ∈ N.

• Now, suppose we are at the iteration k and Y | Ŝ(k) 6= Y | S. Now we
show the algorithm does not halt at this iteration and Ŝ(k+1) ) Ŝ(k).
Indeed, since Ŝ(k) ⊆ S and Y | Ŝ(k) 6= Y | S, by definition we know
that on the event E ′, the initialization condition (F (β(0);Q(k)

n ))2 > γ

holds, and moreover the gradient ascent iterate returns β(∗;Q(k)
n ) with

supp
(
β(∗;Q(k)

n )
)
\Ŝ(k) 6= ∅.

Thus the algorithm does not halt at the iteration, and moreover,

Ŝ(k+1) = Ŝ(k) ∪ supp
(
β(∗;Q(k)

n )
)
) Ŝ(k).

As such, we have shown that Ŝ ⊆ S on the event E , and moreover, the output
Ŝ must satisfy Y | Ŝ = Y | S. This proves the recovery result in Theorem 4.
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L.3. Proof of Proposition 8. Our strategy is to first prove that the
proposition holds on population (n = ∞), and then extend the result to
finite sample case (n < ∞) by standard concentration inequalities and per-
turbation arguments.

Population Analysis: n =∞. Let A ⊆ S be such that Y | XA 6= Y | XS . We
prove that with probability one, any accumulation point β(∗) of the gradient
iterates must satisfy supp(β(∗))\A 6= ∅. To prove this, we notice the following
basic facts.

• By assumption, the inequality below holds

(156) (F (β(0);QA))2 > γ.

Hence, the algorithm passes the initialization condition.
• Mimic the proof of equation (146), one can show that if the stepsize
α ≤ 1

Cp for some sufficiently large constant C > 0, then

F (β(m);QA) ≥ F (β(0);QA) for all m ∈ N.

In particular, this shows that any accumulation point β(∗) of the gra-
dient iterates must satisfy

(157) F (β(∗);QA) ≥ F (β(0);QA) > 0.

• By Proposition 3, we know that XA ⊥ Y under QA. Hence,

(158) F (β;QA) = 0 when supp(β) ⊆ A.

Equations (157) and (158) immediately show that supp(β(∗))\A is not empty.

Finite Sample Analysis: n <∞. Here we extend the above analysis to the
finite sample situation where n <∞. The proof here is essentially the same
as that of n =∞—the only change we make is to substitute the population
objective by the empirical one. The main technical tool that we need is
Corollary J.1, which provides a high probability bound on the difference
between the empirical and population objective uniformly over β ∈ B.

Again, we start with any set A ⊆ S such that Y | XA 6= Y | XS . By Corol-
lary J.1, for some constant C̄ that depends only on b,M, %, f(0), f ′(0), f ′′(0),
we have with probability at least 1− p−t2 − e−n%2/32,

(159) sup
β∈B

∣∣F (β;QA
n )− F (β;QA)

∣∣ ≤ C̄ ·√ log p

n
· (1 + t)
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Let Λ denote the event that equation (159) holds. It suffices to prove that,
on the event Λ, any accumulation point β(∗) of the gradient iterates must
satisfy supp(β(∗))\A 6= ∅. To prove this, we mimic what we have done before.
In the discussion below, we assume that we are on the event Λ.

• We check whether the algorithm passes the initialization condition:

(160) (F (β(0);QA
n ))2 ≥ γ.

Note that, since both β 7→ F (β;QA
n ) and β 7→ F (β;QA) are uniformly

bounded by |f(0)| when β ∈ B, equation (159) immediately implies
that

(161) sup
β∈B

∣∣F 2(β;QA
n )− F 2(β;QA)

∣∣ ≤ 2C̄ · |f(0)| ·
√

log p

n
· (1 + t).

By definition of Λ and triangle inequality, a sufficient condition is

(162) (F (β(0);QA))2 ≥ γ + 2C̄ · |f(0)| ·
√

log p

n
· (1 + t).

where C̄ > 0 is the constant that appears in the equation (159).
• Again, mimic the proof of equation (146), one can show that if the

stepsize α ≤ 1
(C·p) for some sufficiently large constant C > 0, then

F (β(m);QA
n ) ≥ F (β(0);QA

n ) for all m ∈ N.

In particular, this shows that any accumulation point β(∗) of the gra-
dient iterates must satisfy

(F (β(∗);QA
n ))2 ≥ (F (β(0);QA

n ))2.

By triangle inequality, and using the definition of Λ (cf. equation (161))
again, we obtain that any accumulation point β(∗) must satisfy

(F (β(∗);QA))2 ≥ γ − 2C̄ · |f(0)| ·
√

log p

n
· (1 + t)

where C̄ > 0 is the constant that appears in the equation (159). This

shows that if γ > 2C̄ · |f(0)| ·
√

log p
n · (1 + t), then on the event Λ,

(163) F (β(∗);QA) > 0.
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• By Proposition 3, we know that XA ⊥ Y under QA. Hence,

(164) F (β;QA) = 0 when supp(β) ⊆ A.

Summarizing the above discussions, we have seen that if the stepsize α ≤ 1
Cp ,

and if the threshold γ satisfies

γ > C ·
√

log p

n
· (1 + t)

for some large constant C > 0, then equations (160), (163) and (164) hold
conditional on the event Λ. In other words, when the constant C > 0 stated
in Proposition 8 is sufficiently large, then supp(β(∗))\A 6= ∅, conditional on
the event Λ. Recall P(Λ) ≥ 1− p−t2 − e−n%2/32. This completes the proof.

APPENDIX M: PROOF OF FALSE POSITIVE CONTROL IN
HIGH-DIMENSION

This section presents the proof of Theorem 3. The fundamental math-
ematical tool that underlies the proof is Proposition 3 and Corollary J.1.
Proposition 3 shows on population the gradient with respect to noise vari-
able is negative—and thereby there is no false discovery. Corollary J.1 shows
that the empirical gradient is uniformly close to the population gradient.
Therefore, with an explicit `1 penalty, we can easily translate the no false
positive result from the population to the empirical objective, which is the
content of Theorem 3.

M.1. Notation. Consider the metric learning algorithm. Let Q(1),Q(2),
. . . ,Q(k), . . . denote the sequence of the weighting distribution, and Ŝ(1), Ŝ(2),
. . . , Ŝ(k), . . . denote the set of variables selected by the algorithm through the
iterations. By convention, we define Ŝ(0) = ∅. Note then Ŝ =

⋃
k Ŝ

(k) is the
final output of the algorithm. We use {β(m;Q(k))}m∈N to denote the inner-loop
projected gradient ascent iterates that solve the maximization problem

max
β∈B

`(β;λ,Q(k)
n )

where we recall the definition of the regularized objective (for all Q)

`(β;λ,Q) = F (β;Q)− λ ‖β‖1 .

We use β(∗;Q(k)) to denote the accumulation point that’s returned from the
gradient ascent inner-loop. This means in particular we have

Ŝ(k+1) = Ŝ(k) ∪ supp(β(∗;Q(k))).
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We sometimes drop the dependence of the gradient ascent iterates on the
probability measure Q. This means that we may refer β(m) to β(m;Q(k)), and
refer β(∗) to β(∗;Q(k)) when the context is clear.

M.2. Proof of Theorem 3.

M.2.1. Organization of the Proof. On a high level, the proof has two
parts.

• In the first part, we show that with high probability Ŝ ⊆ S.
• In the second part, we show that with high probability the algorithm

terminates in finite time.

We detail the two parts of the proofs in subsection M.2.2 and M.2.3 below.

M.2.2. Proof of Part 1: Ŝ ⊆ S. In this section, we show that Ŝ ⊆ S with
probability at least 1 − 2s+1(p−t

2
+ e−n%

2/32). The key to the proof is the
following proposition 3, whose proof is deferred to section M.3.1.

Proposition 9. Let A ⊆ S. Consider the optimization problem

(165) On,λ,A : maximize
β∈B

`(β;λ,QA
n ).

Then there exists some constant C > 0 that depends only on the parameters
b,M, q, %, f(0), f ′(0), f ′′(0) such that for any t > 0 and any penalty

λ > C ·
√

log p

n
· (1 + t),

with probability at least 1 − (p−t
2

+ e−n%
2/32), we have any stationary point

β of the optimization problem On,λ,A (cf. equation (165)) must satisfy

(166) supp(β) ⊆ S.

We are now ready to show that Ŝ ⊆ S with high probability. This is
achieved by showing that with high probability Ŝ(k) ⊆ S for all k ∈ N. Let
EA denote the event that’s stated in Proposition 9. Let E = ∩A:A⊆SEA denote
the event where all events EA where A ⊆ S happens. By Proposition 9 and
the union bound, we understand with appropriate choice of constant C > 0
in the definition of E ,

(167) P(E) ≥ 1− 2s+1(p−t
2

+ e−n%
2/32).
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Below, we show on the event E that the following happens:

(168) Ŝ(k) ⊆ S holds for all k ∈ N.

Note we define by convention Ŝ(k) = Ŝ for any k > T where T is the total
number of iterations after which the algorithm halts. Our proof is based on
induction on m ∈ N. Below we assume we are on the event E .

• The base case where k = 0 trivially holds since Ŝ0 = ∅.
• Assume the induction hypothesis holds for k, i.e., Ŝ(k) ⊆ S. Consider

the case where k + 1. We aim to show that Ŝ(k+1) ⊆ S. Note that if
we run the gradient ascent to solve the maximization problem

On,λ,Ŝ(k) : max
β∈B

`n(β;λ,Q(k))

the solution β(∗;Q(k)) we obtain must be a stationary point of the prob-
lem when the stepsize α ≤ 1/(Cp) for sufficiently large C (This is
a consequence of Lemma K.1 and Lemma O.4; Lemma K.1 shows
that `n(β;λ,Q(k)) is L = |f ′′(0)|Mp smooth where M = (2M)q, and
Lemma O.4 shows that any accumulation point of gradient ascent with
stepsize α ≤ 1/L must be stationary). Since Ŝ(k) ⊆ S, by definition of
the event E , we have

supp
(
β(∗;Q(k))

)
⊆ S.

Consequently, this shows that, the output Ŝ(k+1) satisfies

Ŝ(k+1) = Ŝ(k) ∪ supp
(
β(∗;Q(k))

)
⊆ S.

This proves that the hypothesis also holds for m = k + 1.

As such, we have shown that Ŝ ⊆ S on the event E . This happens with
probability at least 1− 2s+1(p−t

2
+ e−n%

2/32), thanks to equation (167).

M.2.3. Proof of Part 2: Termination in Finite Time. In this section, we
show that with high probability the algorithm terminates in finite time. The
key to the proof is the following Proposition 10, whose proof is deferred into
Section M.3.2.

Proposition 10. Let A ⊆ S. Consider the optimization problem

(169) On,λ,A : maximize
β∈B

`(β;λ,QA
n ).
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Then there exists some constant C > 0 that depends only on the parameters
b,M, q, %, f(0), f ′(0), f ′′(0) such that for any t > 0 and any penalty

λ > C ·
√

log p

n
· (1 + t),

with probability at least 1 − (p−t
2

+ e−n%
2/32), we have any stationary point

β of the optimization problem On,λ,A (cf. equation (169)) must satisfy

(170) either β = 0 or supp(β)\A 6= ∅.

We are now ready to show that the algorithm terminates in finite time.
The basic intuition is that with high probability at any iteration k ∈ N, the
solution β(∗,Q(k)) must fall into one of the following two cases:

• β(∗,Q(k)) = 0. This is the case when the algorithm halts.
• supp(β(∗,Q(k)))\Ŝ(k) 6= ∅. This is the case where the algorithm finds at

least one new variable, i.e., Ŝ(k+1) ⊇ Ŝ(k).

Let EA and E ′A denote the event that’s stated in Proposition 9 and Proposi-
tion 10 respectively. Let E = ∩A:A⊆SEA and E ′ = ∩A:A⊆SE ′A. By Proposition
7 and Proposition 8 and the union bound, we understand with the appropri-
ate choice of constant C > 0 in the definition of E , E ′, we have

(171) P(E ∩ E ′) ≥ 1− 2s+2(p−t
2

+ e−n%
2/32).

Below we show on the event E ∩ E ′ the algorithm terminates in finite time.
Our reasoning is based on the following points.

• By the analysis in the previous part, we understand on the event E ,
the algorithm does not over-select noise variables, i.e.,

Ŝ(k) ⊆ S holds for all k ∈ N.

• Now, suppose we are at the iteration k. By the previous point, on the
event E , Ŝ(k) ⊆ S. By the definition of E ′, we know that the gradient
ascent iterate returns β(∗;Q(k)) that satisfies

(172) either β(∗;Q(k)) = 0 or supp
(
β(∗;Q(k))

)
\Ŝ(k) 6= ∅.

Thus, we have two cases based on the value of β(∗;Q(k)).

– β(∗;Q(k)) = 0. Then the algorithm halts at this kth iteration.
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– β(∗;Q(k)) 6= 0. In this case, the algorithm adds at least one new
variable. Indeed, by equation (172), we have

Ŝ(k+1) = Ŝ(k) ∪ supp
(
β(∗;Q(k))

)
) Ŝ(k).

This shows that the algorithm terminates in at most |S| steps.

As such, we have shown that the algorithm terminates in finite time on the
event E ∩E ′. This happens with probability at least 1−2s+2(p−t

2
+e−n%

2/32),
thanks to equation (171).

M.3. Proof of the Propositions 9-10.

M.3.1. Proof of Proposition 9. The key to the proof is to establish the
following result.

Claim 3. Let A ⊆ S. There exists some constant C > 0 depending only
on b,M, q, %, f(0), f ′(0), f ′′(0) such that for any t > 0 and any penalty

(173) λ > C ·
√

log p

n
· (1 + t),

we have with probability at least 1− p−t2 − e−n%2/32, the inequality

∂

∂βj
`(β;λ,QA

n ) < 0

holds simultaneously for any β ∈ B and any index j ∈ Sc.

Claim 3 says with high probability, any β ∈ B with βSc 6= 0 cannot be
a stationary point of the optimization problem—decreasing the value of βj
where j ∈ supp(β) ∩ Sc strictly increases the objective `(β;λ,QA

n ). Thus,
proving the claim immediately leads to the desired Proposition 9.

Now we prove Claim 3. Our proof of Claim 3 proceeds as follows. We first
prove the Claim holds on population (n =∞). Then, we extend the Claim,
showing it also holds in finite sample (n <∞) by using standard concentra-
tion and perturbation arguments. We note for any β ∈ B the gradient takes
the form

∂

∂βj
`(β;λ,QA) = EwAB−W

[
dj · f ′ (〈β,d〉)

]
− λ.

∂

∂βj
`(β;λ,QA

n ) = ÊwAn,B−W
[
dj · f ′ (〈β,d〉)

]
− λ.

(174)
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Population Analysis n = ∞. Here we show that Claim 3 holds in popula-
tion. Proposition 3 is crucial towards this end. By Proposition 3, we obtain
for any β ∈ Rp+ and j ∈ Sc,

∂

∂βj
F (β;λ,QA) = EwAB−W

[
dj · f ′ (〈β,d〉)

]
≤ 0.

We wish to emphasize that, in using Proposition 3, we implicitly use the fact
that our choice of the weighting distribution QA maintains the distributional
property Y | X = Y | XS and XS ⊥ XSc thanks to Proposition 3.

Now, using the first equation in equations (174), we immediately obtain

∂

∂βj
`(β;λ,QA) = EwAB−W

[
dj · f ′ (〈β,d〉)

]
− λ ≤ −λ < 0.(175)

This proves Claim 3 holds on population (n =∞).

Finite Sample Analysis n <∞. Here we prove Claim 3 also holds in finite
sample scenario n <∞. The proof is essentially the same as before, and the
only difference is to replace the population gradient by the empirical one.
Hence, the key to the proof is to bound the difference between the quantities

∂

∂βj
`(β;λ,QA

n ) and
∂

∂βj
`(β;λ,QA)

over all possible values of β ∈ B and all possible variable j ∈ Sc. Corol-
lary J.1 provides such a high probability bound. Indeed, it shows that for
some constant C > 0 depending only on b,M, %, f(0), f ′(0), f ′′(0), we have
with probability at least 1− (p−t

2
+ e−n%

2/32),

sup
j∈[p]

sup
β∈B

∣∣∣∣ ∂∂βj F (β;QA
n )− ∂

∂βj
F (β;QA)

∣∣∣∣ ≤ C
√

log p

n
(1 + t).(176)

Let’s denote Λ to be the event where equation (176) holds. Using equa-
tions (174), we immediately obtain that, on the same event Λ,

sup
j∈[p]

sup
β∈B

∣∣∣∣ ∂∂βj `(β;λ,QA
n )− ∂

∂βj
`(β;λ,QA)

∣∣∣∣ ≤ C
√

log p

n
(1 + t).(177)

Now assume the penalty λ is greater than the RHS of equation (177), i.e.,

λ > C ·
√

log p

n
· (1 + t).
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By equations (175), (177) and the triangle inequality, on the event Λ, we
have for any β ∈ B and any j ∈ Sc:

∂

∂βj
`(β;λ,QA

n )

≤ ∂

∂βj
`(β;λ,QA) +

∣∣∣∣ ∂∂βj `(β;λ,QA
n )− ∂

∂βj
`(β;λ,QA)

∣∣∣∣
≤ −λ+ C ·

√
log p

n
· (1 + t) < 0.

Recall P(Λ) ≥ 1− p−t2 − e−n%2/32. This shows Claim 3 holds in finite case.

Summary. As mentioned earlier, Claim 3 implies Proposition 9 as desired.

M.3.2. Proof of Proposition 10. The key to the proof is to establish the
following result.

Claim 4. Let A ⊆ S. There exists some constant C > 0 depending only
on b,M, q, %, f(0), f ′(0), f ′′(0) such that for any t > 0 and any penalty

(178) λ > C ·
√

log p

n
· (1 + t),

we have with probability at least 1− p−t2 − e−n%2/32, the inequality

∂

∂βj
`(β;λ,QA

n ) < 0

holds simultaneously for any β ∈ B with supp(β) ⊆ A and any index j ∈ A.

Claim 4 says with high probability, any 0 6= β ∈ B with supp(β) ⊆ A
cannot be a stationary point of the optimization problem—decreasing the
value of βj where j ∈ supp(β)∩A strictly increases the objective `(β;λ,QA

n ).
Thus, proving the claim immediately leads to the desired Proposition M.3.2.

Now we prove Claim 4. Our proof of Claim 4 proceeds as follows. We
first prove the Claim holds on population (n = ∞). Then, we extend the
Claim, showing it also holds in finite sample (n < ∞) by using standard
concentration and perturbation arguments. We note any β ∈ B has gradients

∂

∂βj
`(β;λ,QA) = EwAB−W

[
dj · f ′ (〈β,d〉)

]
− λ.

∂

∂βj
`(β;λ,QA

n ) = ÊwAn,B−W
[
dj · f ′ (〈β,d〉)

]
− λ.

(179)
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Population Analysis n = ∞. Here we show that Claim 4 holds in popula-
tion. By Proposition 3, XA ⊥ Y under QA. Hence, we have for all β ∈ B
with supp(β) ⊆ A and all index j ∈ A:

∂

∂βj
`(β;λ;QA) = EwAB−W

[
dj · f ′(

∥∥X −X ′∥∥
q,β

)
]
− λ

= EwAB−W
[
dj · f ′(

∥∥XA −X ′A
∥∥
q,βA

)
]
− λ

= −λ < 0,

(180)

This proves Claim 4 holds on population (n =∞).

Finite Sample Analysis n <∞. Here we prove Claim 4 also holds in finite
sample scenario n <∞. The proof is essentially the same as before, and the
only difference is to replace the population gradient by the empirical one.
Hence, the key to the proof is to bound the difference between the quantities

∂

∂βj
`(β;λ,QA

n ) and
∂

∂βj
`(β;λ,QA)

over all possible values of β ∈ B and all possible variable j ∈ Sc. Corol-
lary J.1 provides such a high probability bound. Indeed, it shows that for
some constant C > 0 depending only on b,M, %, f(0), f ′(0), f ′′(0), we have
with probability at least 1− (p−t

2
+ e−n%

2/32),

sup
j∈[p]

sup
β∈B

∣∣∣∣ ∂∂βj F (β;QA
n )− ∂

∂βj
F (β;QA)

∣∣∣∣ ≤ C
√

log p

n
(1 + t).(181)

Let’s denote Λ to be the event where equation (181) holds. Using equa-
tions (179), we immediately obtain that, on the same event Λ,

sup
j∈[p]

sup
β∈B

∣∣∣∣ ∂∂βj `(β;λ,QA
n )− ∂

∂βj
`(β;λ,QA)

∣∣∣∣ ≤ C
√

log p

n
(1 + t).(182)

Now assume the penalty λ is greater than the RHS of equation (182), i.e.,

λ > C ·
√

log p

n
· (1 + t).
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By equations (180), (182) and the triangle inequality, on the event Λ, we
have for for all β ∈ B with supp(β) ⊆ A and all index j ∈ A:

∂

∂βj
`(β;λ,QA

n )

≤ ∂

∂βj
`(β;λ,QA) +

∣∣∣∣ ∂∂βj `(β;λ,QA
n )− ∂

∂βj
`(β;λ,QA)

∣∣∣∣
≤ −λ+ C ·

√
log p

n
· (1 + t) < 0.

Recall P(Λ) ≥ 1− p−t2 − e−n%2/32. This shows Claim 4 holds in finite case.

Summary. As mentioned, Claim 4 implies Proposition 10 as desired.

M.4. Discussion on Early Stopping of Gradient Ascent. The
proof of Theorem 3 suggests that we can still achieve the high probabil-
ity no-false-positive guarantees if we modify the algorithm to perform an
early stopping on the inner-loop gradient ascent iterates. Indeed, the proof
of Theorem 3, and in particular, the result in Claim 3 shows that with high
probability the inner-loop gradient ascent iterates satisfy for all noise variable
j:

β
(m)
j+1 ≤

(
β

(m)
j − αλ

)
+

provided that λ ≥ C ·
√

log p
n for some constant C > 0 independent of

p. Hence, if the initialization β(0) has coordinates on the order of 1
p (say

β(0) = b
p1) and the stepsize α = Ω(1

p), then with constant number of itera-
tion m′ (here constant means the number of iteration m′ is independent of
p), the gradient ascent iteration will reach a point where βm′j = 0 for all noise
variable j. Performing such early stopping will significantly reduce the com-
putation cost, while maintaining the statistical guarantee on no-false-positive
control. One thing that really worth attention is that there is also the signal
recovery guarantees when the stepsize α = Ω(1

p) (see the high-dimensional
recovery results; Theorem 5—7).

APPENDIX N: PROOFS OF RECOVERY IN HIGH DIMENSION

This section presents the proof of all the recovery results in Section 5 in
the main text. The roadmap of the section is as follows.

1. Section N.1 presents the proof of Theorem 5, showing that metric learn-
ing recover main effect signals w.h.p with n ∼ log p samples.



76 LIU AND RUAN

2. Section N.2 presents a more general recovery result on the main ef-
fect signals, namely, Proposition 11, that generalizes Theorem 5. As
a comparison, while Theorem 5 assumes conditional independence be-
tween signal variables, Proposition 11 places no assumptions on the
dependence structure on the signal variables.

3. Section N.3 presents the proof of Theorem 6, showing that metric
learning algorithm recovers s order pure interaction w.h.p with n ∼
p2(s−1) log p sample; the recovery assumes a computational budget that
is linear in the total variables p. Section N.4 discusses how a slight mod-
ification of the original metric learning algorithm manages to detect s
order pure interaction with n ∼ p2(s−s0)+ log p samples, under the as-
sumption of a larger computational budget O(ps0).

4. Section N.5 presents the proof of Theorem N.5, showing that a slight
modification of the original metric learning (which we call hierarchical
metric learning, see Algorithm 1) recovers the signals under hierarchi-
cal model with n ∼ log p samples. Section N.6 shows such modification
is necessary from a computational perspective (by analyzing the land-
scape of the hierarchical model).

5. Section N.7 presents the proof of Proposition 6, showing that the sta-
tistical information in the objective and gradient for `1 type kernel is
much stronger than that for the `2 type kernel.

6. Section N.8 presents the proof of a technical result used in the proof
of Theorem 6.

N.1. Proof of Theorem 5 (Recovery of Main Effects). We will
show with probability at least 1−2s(p−t

2
+e−n%

2/32), the algorithm success-
fully selects all the signal variables within the set S(λ) before it terminates.
Together with Theorem 3, which shows the algorithm with high probability
does not over-select any noise variable, we obtain Theorem 5 as desired.

Below we show the algorithm outputs Ŝ that contains S(λ) with proba-
bility at least 1− 2s(p−t

2
+ e−n%

2/32). Denote the optimization problem

On,λ,Q : maximize
β∈B

`(β;λ;Qn).

For any A ⊆ [p], solving On,λ,Q for Q = QA with gradient ascent will always
return a stationary point of On,λ,Q when the stepsize α ≤ 1/(Cp) for the
constant C = |f ′′(0)|M where M = 2M (thanks to Lemma K.1 and O.4).

Here is the key to the proof: with probability at least 1−2s(p−t
2
+e−n%

2/32),
0 ∈ B can’t be stationary for the optimization problem On,λ,QwŜ unless Ŝ
contains S(λ). Once we prove the claim, by Proposition 10 and Theorem 3,
we know with high probability the algorithm will proceed until Ŝ contains
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S(λ). Below we will first prove the key claim holds on population (n =
∞), and then prove it also holds on finite sample (n < ∞) using standard
concentration and perturbation techniques.

Population case: n = ∞. Write A ≡ Ŝ(k), the variables being selected by
iteration k. Suppose A does not contain the set S(λ). Now we prove 0 ∈ B
can’t be stationary with respect to the optimization problem O∞,λ,QA .

Pick a signal variable j ∈ S(λ)\A. We compute the derivative of the
objective function `(β;λ,QA) with respect to variable j at β = 0:

(183)
∂

∂βj
`(β;λ,QA) |β=0= f ′(0) · EwAB−W

[∣∣Xj −X ′j
∣∣]− λ.

According to Proposition 3, the rebalancing procedure keeps the law of XAc |
Y before and after reweighting. In particular, Xj | Y has the same law under
QA and P. Therefore, we have

(184) EwAB−W
[∣∣Xj −X ′j

∣∣] = EB−W
[∣∣Xj −X ′j

∣∣] .
By equations (183) and (184), and the fact that j ∈ S(λ, t), we obtain

(185)
∂

∂βj
`(β;λ,QA) |β=0= f ′(0) · EB−W

[∣∣Xj −X ′j
∣∣]− λ > 0,

where the last inequality uses the definition of the set S(λ). This shows that
β = 0 can’t be stationary for the optimization problem O∞,λ,QA unless A
contains S(λ). As a result, the algorithm does not stop at iteration k unless
Ŝ(k) ⊇ S(λ). Consequently, this implies that Ŝ ⊇ S(λ).

Finite Sample case: n < ∞. The proof is essentially the same as in the
population case n =∞. The major difference is that we replace the popula-
tion gradient ∂

∂βj
`(β;λ,Q) by the empirical gradient ∂

∂βj
`(β;λ,Qn) over all

possible reweighting distributions Q = QA where A is a subset of S (recall
the algorithm does not over-select any noise variable with high probability).
Our proof uses the high probability bound (Corollary J.1) to control the
difference between the population and empirical gradients.

Below we give the details of the proof. We introduce two events that are
of crucial importance.

• Let E be the event that is stated in Theorem 3—the event on which
the algorithm does not over-select noise variables. By Theorem 3, E
happens with probability at least 1− 2s(p−t

2
+ e−n%

2/32).



78 LIU AND RUAN

• Let E ′ be the event for which we have the high probability bound on
the empirical and population gradients
(186)∣∣∣∣ ∂∂βj `(β;λ,QA

n ) |β=0 −
∂

∂βj
`(β;λ,QA) |β=0

∣∣∣∣ ≤ C ·
√

log p

n
· (1 + t)

holds simultaneously for all set A ⊆ S and all variables j ∈ [p]. By
Corollary J.1 and union bound, we can choose appropriate constant
C > 0 such that E ′ happens with probability at least 1 − 2s(p−t

2
+

e−n%
2/32). Here C > 0 depends only on b,M, %, f(0), f ′(0), f ′′(0).

Let E = E ∩ E ′. Let the constant C in the definition of S(λ) be the same

constant C appeared in equation (186). Assume λ > C ·
√

log p
n · (1 + t). We

show on event E , the algorithm selects S(λ) before it terminates. To see this,
let k denote the iteration, and A ≡ Ŝ(k) denote the set of variables selected
by iteration k. Suppose A does not contain the set S(λ). Now we prove 0 ∈ B
can’t be stationary with respect to the optimization On,λ,QA . Indeed, pick
any signal variable j ∈ S(λ, t)\A. By equations (185) and (186), we have

∂

∂βj
`(β;λ,QA

n ) |β=0

≥ ∂

∂βj
`(β;λ,QA) |β=0 −

∣∣∣∣ ∂∂βj `(β;λ,QA
n ) |β=0 −

∂

∂βj
`(β;λ,QA) |β=0

∣∣∣∣
= |f ′(0)| ·

∣∣EB−W [∣∣Xj −X ′j
∣∣] ∣∣− C ·√ log p

n
· (1 + t)− λ > 0.

where the last inequality uses the definition of S(λ). As a result, we have
shown on event E , the algorithm does not stop at iteration k unless the
set Ŝ(k) ⊇ S(λ). In other words, on event E , the output of the algorithm
must satisfy Ŝ ⊇ S(λ). Since the event E happens with probability at least
1− 2s+1(p−t

2
+ e−n%

2/32), this concludes the proof for the finite case n <∞.

N.2. Recovery of Main Effects under Dependence. Proposition 11
generalizes Theorem 5. It shows that metric learning can w.h.p. recover signal
variables that contribute additional explanatory power after accounting for
the other variables (and the explanatory power has to be significant enough
in the finite sample case; cf. equation (187)).

Proposition 11. Assume (A1)-(A3). Let q = 1. There exists some con-
stant C > 0 depending only on f(0), f ′(0), f ′′(0),M, b, ν such that the fol-
lowing holds: for any t > 0, any initialization β(0), and any stepsize α and
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penalty λ satisfying

λ ≥ C ·
√

log p

n
· (1 + t) and α ≤ 1

C · p
,

with probability at least 1 − 2s+2(p−t
2

+ e−n%
2/32), the metric learning algo-

rithm outputs a set Ŝ such that S ⊇ Ŝ ⊇ S(λ), where

S(λ) :=
{
j : min

A⊆S\{j}
SIGNAL({j} | A) ≥ 2λ

}
where SIGNAL({j} | A) = f ′(0) · E(A)

B−W
[∣∣Xj −X ′j

∣∣](187)

N.2.1. Proof of Proposition 11. The proof of Proposition 11 is very simi-
lar to that of Theorem 5. Our proof strategy is essentially the same: we show
0 ∈ B can’t be the stationary point with high probability unless Ŝ ⊇ S(λ).
Below we sketch out the proof.

First, we consider the population case where n = ∞. Let A ≡ Ŝ(k), the
variables being selected at iteration k. Suppose A does not contain S(λ).
Now we prove 0 ∈ B can’t be the stationary point (and so the algorithm does
not stop). Pick a signal variable j ∈ S(λ)\A. The derivative of the objective
function `(β;λ,QA) with respect to variable j at β = 0 gives exactly the same
equation (183) as before. Without the conditional independence assumption,
we no longer have equation (184) to hold. Yet we can still derive an analogous
version of equation (185) with only equation (183) at hand—the key is to
exploit this new (and different) definition of S(λ). In fact, we have for any
j ∈ S(λ),

(188)
∂

∂βj
`(β;λ,QA) |β=0= f ′(0) · E(wA)

B−W
[∣∣Xj −X ′j

∣∣]− λ > 0,

where the inequality holds since the definition of S(λ). As such, we have
proven the desired claim, that is, β = 0 can’t be stationary unless the set of
selected variables A contains the set S(λ).

Next, we extend the result to the finite sample case where n < ∞. The
proof is essentially the same as that appeared in the proof of Theorem 5. We
omit the details for the interested readers.

N.3. Proof of Theorem 6 (Recovery of Pure Interactions). Through-
out the proof, we assume W.L.O.G that for the constants λ,C (the constant
C is to be determined from the proof)

SIGNAL(S) ≥ NOISE(λ;C) = 2λ+
C

ps
.
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We will show with probability at least 1 − p−t
2 − e−n%

2/32, the algorithm
successfully selects all the pure interaction signal variables S. Together with
Theorem 3, which shows the algorithm with high probability does not over-
select any noise variable, we obtain Theorem 6 as desired.

Below we show the metric learning algorithm selects all the signal variables
S in a single iteration, i.e., Ŝ(1) = S, with probability at least 1 − p−t2 −
e−n%

2/32. In the first iteration, the algorithm aims to solve the optimization

On,λ : maximize
β∈B

`(β;λ;Qn)

Here Q is a reweighted version of P, i.e., dQ(x, y) ∝ dP (x, y) ·P (1−y). Note
that the conditional distribution of X|Y is the same under P and Q. Yet the
marginal distribution of Y is not the same. In fact, Q is always balanced,
i.e., Q(Y = 0) = Q(Y = 1) = 1

2 , while P is not necessarily balanced.
Recall that we solve the optimization using projected gradient ascent:

formally, with initialization β(0) = b
p1, we update

β(m+1) = ΠB

(
β(m+1/2)

)
where β(m+1/2) = β(m) + α · ∇`(β(m);λ;Qn).

The key to the proof is to establish Proposition 12, whose proof is pretty
technical, and is deferred to Section N.8.

Proposition 12. Assume the same assumption as in Theorem 6. As-
sume the constant C > 0 stated in Theorem 6 is large enough. Then, we have
with probability at least 1− p−t2 − e−n%2/32, the gradient iterates β(m) satisfy

(189) min
i∈S

β
(m)
i ≥ ζ ≡ b

8p
> 0 for all m ∈ N.

This proposition essentially says that with high probability at any itera-
tion, the coordinates of the gradient iterates β(m)

S is bounded away from 0.
As a result, this means that with probability at least 1−p−t2−e−n%2/32, any
accumulation point β(∗) of the iterates must satisfy β(∗)

i 6= 0 for all i ∈ S.
Thus, the metric learning algorithm must select the entire signal set S in its
first iteration. This completes the proof.

N.4. Tradeoffs between statistical and computational complex-
ity in interaction search. The sample size requirement, n ∼ p2(s−1) log p,
for the recovery of a pure order s interaction is quite high (see Theorem 6).
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We emphasize though that this is the sample size requirement when we re-
strict ourselves to a computation budget of O(p). If we are willing to increase
our computational budget—by trying many different initial starting points
when maximizing Fn (β)− λ |β|1—we can reduce the necessary sample size.
For example consider searching for pairwise interactions (s = 2) but suppose
we only have n ∼ p log p samples. To guarantee high probability of find-
ing a pure 2-way interaction (assuming it exists), we proceed by partitioning
{1, . . . , p} into√p subsets of size√p: {Al}

√
p

l=1. For every pair of partitions, Al
and Am, we perform metric screening using only the variables in Al and Am.
Since there are only 2

√
p variables in Al and Am, we initialize at βj = 1

2
√
p .

By Theorem 6, if the pure 2-way interaction is among any of the variables
in Al ∪ Am, we will recover it with high probability given n ∼ p log p sam-
ples. But by construction, every pair of variables (j, k) appears in one of the
Al, Am pairs. The computation cost of running metric screening on each pair
Al, Am is O(

√
p) and since there are p pairs of partitions, the overall cost is

p3/2. So by increasing our computation budget from p to p3/2, we can find a
2-way interaction with high probability using only n ∼ p log p samples. This
computation is cheaper than an exhaustive search which costs p2. In general,
if we dedicate a budget of ps0 towards finding a pure order s interaction, the
sample size requirement is p2(s−s0)+ log p.

Algorithm 1 Hierarchical Metric Screening
Require: λ ≥ 0, τ > 0, X ∈ Rn×p, y ∈ {0, 1}n
Ensure: Initialize Ŝ = ∅ and the weight w by

wi =

{
#{yi = 0}/n if yi = 1

#{yi = 1}/n if yi = 0
for i = 1, 2, . . . , n.

1: while Ŝ not converged do
2: Initialize βj = τ for j ∈ Ŝ and βj = 0 for j /∈ Ŝ
3: Run projected gradient ascent (with stepsize α, and initialization β(0)) to solve

max
β∈B:β

Ŝ
=τ1

Ŝ

Fn(β;w)− λ · |β|1.

Update Ŝ = Ŝ ∪ supp(β) where β is any stationary point found by the iterates2.
4: Estimate P(Y |XŜ) and update the weight w by

wi ∝

{
P̂(Y = 0|xi,Ŝ) if yi = 1

P̂(Y = 1|xi,Ŝ) if yi = 0
for i = 1, 2, . . . , n.

5: end while



82 LIU AND RUAN

N.5. Proof of Theorem 7 (Recovery of Hierarchical Interactions).
We will show with probability at least 1 − 2s(p−t

2
+ e−n%

2/32), the algo-
rithm (Algorithm 1) successfully selects all the signal variables within the
set S(λ, τ) ≡ Sl(λ,τ) before it terminates. Together with Theorem 3, which
shows the algorithm with high probability does not over-select any noise
variable, we obtain Theorem 7 as desired.

Below we show the algorithm selects all variables within S(λ, τ) with prob-
ability at least 1− 2s(p−t

2
+ e−n%

2/32). Denote the optimization problem

On,λ,Q;A,τ : maximize
β∈B

`(β;λ;Qn)

subject to βA = τ1A.

For any A ⊆ [p], solving On,λ,Q;A,τ for Q = QA with gradient ascent will
always return a stationary point of On,λ,Q;A,τ when the stepsize α ≤ 1/(Cp)
where C = |f ′′(0)|M and M = 2M (thanks to Lemma K.1 and O.4). As a
result, the hierarchical metric learning algorithm iteratively finds a stationary
point βŜ of the optimization On,λ,QwŜ ,Ŝ,τ and updates Ŝ by Ŝ ∪ supp(βŜ).
The algorithm terminates when supp(βŜ) ⊆ Ŝ.

The key to the proof is show the following claim: denoting βτ,A0 ∈ Rp to
be the vector whose coordinate is τ in A, and 0 in Ac, i.e.,

(βτ,A0 )i =

{
τ if i ∈ A
0 if i 6∈ A

then with probability at least 1−2s(p−t
2
+e−n%

2/32), βτ,A0 can’t be stationary
with respect to the optimization problem On,λ,QA;A,τ for any set A ⊆ S
that does not contain S(λ, τ). In particular, with the same probability, any
stationary point β of On,λ,QA;A,τ will satisfy supp(β)\A 6= ∅. Together with
Theorem 3, which shows the algorithm does not over-select any noise variable
with high probability, this means the algorithm will not terminate unless Ŝ
contains S(λ, τ). Below we prove this claim. Our strategy is to first show
the claim holds on population (n = ∞), and then extends it to finite case
(n <∞) using standard concentration and perturbation techniques.

Population case: n = ∞. Let A ⊆ S be any set that does not contain
S(λ, τ). We show βτ,A0 can’t be stationary of the problem O∞,λ,QA,A,τ .

2Technically, β is defined to be any accumulation point of the iterates since there is no
prior knowledge that the algorithm will converge to a stationary point. Technically, it is
this definition that’s used in the proof.
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Let l be the largest integer such that Sl−1 ⊆ A. Let j ∈ [p] be such
that {j} = Sl\Sl−1. Note j ∈ S(λ, τ) since A does not contain S(λ, τ). We
compute the derivative of `(β;λ,QA) with respect to variable j at β = βτ,A0 :

(190)
∂

∂βj
`(β;λ,QA) |

β=βτ,A0
=

∂

∂βj
F (β;QA) |

β=βτ,A0
−λ

Now we show the above partial gradient is positive. Note the following two
important observations. First, the rebalancing procedure makes XA ⊥ Y
after rebalancing by Proposition 3. Second, we have wA = wSj−1 since P(Y |
XA) = P(Y | XSj−1) by definition of hierarchical interaction. Let βτ,A0;j be the
vector whose coordinate is τ in A∪{j}, and 0 in (A∪{j})c. In view of these
two observations, Lemma I.4 immediately implies

∂

∂βj
F (β;QA) |

β=βτ,A0
≥ 1

τ
· F (β;QA) |

β=βτ,A0;j

=
1

τ
· EwAB−W

[
f
(
τ ·
∥∥XA∪{j} −X ′A∪{j}

∥∥
1

)]
=

1

τ
· E

wSj−1

B−W

[
f
(
τ ·
∥∥XA∪{j} −X ′A∪{j}

∥∥
1

)]
,

(191)

Substitute the bound (191) into equation (190), we obtain
(192)
∂

∂βj
`(β;λ,QA) |

β=βτ,A0
≥ 1

τ
· E

wSj−1

B−W

[
f
(
τ ·
∥∥XA∪{j} −X ′A∪{j}

∥∥
1

)]
− λ > 0,

where the last inequality is due to the fact that j ∈ S(λ, τ). As a conse-
quence, increasing βj at β

τ,A
0 would increase the objective. Hence βτ,A0 isn’t

a stationary point with respect to the optimization O∞,λ,QA,A,τ .

Finite Sample case: n < ∞. The proof is essentially the same as in the
population case n =∞. The major difference is that we replace the popula-
tion gradient ∂

∂βj
`(β;λ,Q) by the empirical gradient ∂

∂βj
`(β;λ,Qn) over all

possible reweighting distributions Q = QA where A is a subset of S (recall
the algorithm does not over-select any noise variable with high probability).
The technique we use is the high probability bound (cf. Corollary J.1) that
controls the difference between the population and empirical gradients.

Below we give the details of the proof. We introduce two events that are
of crucial importance.

1. Let E be the event that is stated in Theorem 3—the event on which
the algorithm does not over-select noise variables. By Theorem 3, E
happens with probability at least 1− 2s(p−t

2
+ e−n%

2/32).
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2. Let E ′ be the event for which we have the high probability bound on
the empirical and population gradients

(193)
∣∣∣∣ ∂∂βj `(β;λ,QA

n )− ∂

∂βj
`(β;λ,QA)

∣∣∣∣ ≤ C ·
√

log p

n
· (1 + t)

holds simultaneously for all β ∈ B, all set A ⊆ S and all variables
j ∈ [p]. By Corollary J.1 and union bound, we know for some large
constant C > 0 that depends only on b,M, ν, f(0), f ′(0), f ′′(0), the
event E ′ happens with probability at least 1− 2s(p−t

2
+ e−n%

2/32).

Now, let E = E ∩E ′. Let the constant C in the definition of S(λ, τ) be the

same constant C appeared in equation (186). Assume λ > C ·
√

log p
n · (1 + t).

We show on event E , βτ,A0 can’t be stationary of the problem O∞,λ,QA,A,τ for
any set A ⊆ S that does not contain S(λ, τ).

To see this, let A be any set that does not contain S(λ, τ). Let l be the
largest integer such that Sl−1 ⊆ A. Let j be such that {j} = Sl\Sl−1. By
equations (192) and (193), we have on event E ,

∂

∂βj
`(β;λ,QA

n ) |
β=βτ,A0

≥ ∂

∂βj
`(β;λ,QA) |

β=βτ,A0
−
∣∣∣∣ ∂∂βj `(β;λ,QA

n ) |
β=βτ,A0

− ∂

∂βj
`(β;λ,QA) |

β=βτ,A0

∣∣∣∣
≥ 1

τ
· E

wSj−1

B−W

[
f
(
τ ·
∥∥XA∪{j} −X ′A∪{j}

∥∥
1

)]
− λ− C

√
log p

n
· (1 + t) > 0

where the last inequality uses the definition of S(λ, τ) and the fact that
j ∈ S(λ, τ). As a result, we have shown on event E , βτ,A0 can’t be stationary
of the problem O∞,λ,QA,A,τ for any set A ⊆ S that does not contain S(λ, τ).
Note the event E happens with probability at least 1− 2s+1(p−t

2
+ e−n%

2/32)
by the union bound. This concludes the proof for the finite case n <∞.

N.6. Landscape of F (β;Q) Under a Hierarchical Interaction.
Hierarchical signals can be tricky to recover3. To see why, consider the fol-
lowing situation. X1 and X2 are involved in a hierarchical interaction where
X1 6⊥ Y and X2 ⊥ Y . In the first round of metric screening, suppose we
select X1 but not X2. After rebalancing, we know X1 ⊥ Y . As the following
example demonstrates, it is possible to simultaneously have X2 ⊥ Y after
rebalancing. In this case, X1 and X2 are involved in a pure interaction af-
ter rebalancing and we know that pure interactions cannot be detected with

3Their recovery is not guaranteed by either Theorem 5 or Corollary 11.
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n ∼ log p samples. To bypass this difficulty, the modified Algorithm 1 is used
to recover hierarchical interactions.

Example: Consider the following model: assume Y is balanced

P (Y = 1) = P (Y = 0) =
1

2
.

The first signal X1 has its conditional distribution X1|Y given by

P(X1 = ±1

2
| Y = 1) =

1

2
(1± δ1),

P(X1 = ±1

2
| Y = 0) =

1

2
(1∓ δ1).

The second signal X2 has its conditional distribution X2|X1, Y given by

P
(
X2 = ±1

2
| X1 = +

1

2
, Y = 1

)
=

1

2
(1± p(δ1, δ12))

P
(
X2 = ±1

2
| X1 = +

1

2
, Y = 0

)
=

1

2
(1∓ δ1,2)

P
(
X2 = ±1

2
| X1 = −1

2
, Y = 1

)
=

1

2
(1∓ δ12)

P
(
X2 = ±1

2
| X1 = −1

2
, Y = 0

)
=

1

2
(1∓ p(δ1, δ12))

where we adopt the parametrization

p(δ1, δ12) =
1

2
· δ12 ·

1− δ1

1 + δ1
.

The strength of the marginal signal between X1 and Y is captured by δ1 > 0
and the strength of the interaction signal by δ12 > 0. When δ1 = 0 and
δ12 = 1 this reduces to the XOR signal, a pure interaction.

The landscape of F (β;Q(0)) under this statistical model has the following
characteristic:

• If δ1 > 1
2 , F (β;Q(0)) has a single maximum at β = (∞, 0)4; this is

also the case if δ1 <
1
2 but δ1 > δ12. The main effect will mask the

interaction and only X1 will be selected in the first round of metric
screening.

4This means that (r, 0) is the maximum of F (β;Q(0)) over Dr for all sufficiently large
r. Here Dr = {(β1, β2) : 0 ≤ βi ≤ r}.
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• If δ1 < 1
2 and δ1 < δ12, F (β;Q(0)) has a single local maximum at

β = (∞,∞)5. Both X1 and X2 would be selected in this case.

When the main effect is strong, the first round of metric screening selects
X1 but not X2. One can show that after rebalancing, X1 ⊥ Y and X2 ⊥
Y . Therefore, in the second round of metric screening, the signal is a pure
interaction. In particular, F (β;Q(1)) will have one stationary point at (0, 0)
(and this stationary point will be with high probability a local maximum
in the empirical penalized objective `(β;λ,Q(1)

n ) = F (β;Q(1)
n )− λ ‖β‖1). An

algorithmic challenge to evade this bad stationary point thus appears. ♣

N.7. Proof of Proposition 6.

Proof of Part 1. The proof builds on the fundamental result in Lemma I.1–
Lemma I.3. Below we fix P0 and the sequence {Qp}p∈N whereQp ∈ Q(p,M, S,P0).
In the proof, we omit the dependence of F on f, q (so for example, we use
the notation F (β̄;Qp) to refer to F (β̄;Qp, f, 1)).

• Consider first the objective value F (β̄;Qp). Lemma I.3 shows

(194) F (β̄;Qp) ≥
f |S|(2Mb)

f |S|(0)
· FS(β̄S ;Qp),

where FS(β̄S ;Qp) = EB−W
[
f(‖XS −X ′S‖1,β̄S )

]
. By Lemma I.1, FS

satisfies the self-bounding property, i.e., for any β, β′ satisfies βi ≤ β′i,

FS(βS ;Qp) ≥ FS(β′S ;Qp) ·
∏
i∈S

(
βi
β′i

)
.

In particular, if p ≥ b (so that β̄i ≤ 1 for all i ∈ [p]), then we have

(195) FS(β̄S ;Qp) ≥
(∏
i∈S

β̄i

)
· FS(1S ;Qp)

Note then FS(1S ;Qp) = FS(1S ;P0) since the marginal distribution of
(XS , Y ) ∼ P0 when (X,Y ) ∼ Qp. As a result, we obtain for p ≥ b,

(196) F (β̄;Qp) ≥
f |S|(2Mb)

f |S|(0)
· FS(1S ;P0) ·

∏
i∈S

β̄i.

5This means that (r, r) is the maximum of F (β;Q(0)) over Dr for all sufficiently large
r. Here Dr = {(β1, β2) : 0 ≤ βi ≤ r}.
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Recall β̄i = t/p for all i ∈ S. Equation (196) immediately implies

F (β̄;Qp) ≥ c · p−|S| for all p ≥ b,

where the constant c = |f |S|(2Mb)/f |S|(0)| · FS(1S ;P0) · t|S| > 0 de-
pends only on f,M, b,P0, S, t. This proves the first line of equation (9).

• Consider next the gradient ∂
∂βj

F (β̄;Qp) where j ∈ S. Lemma I.2 gives

(197)
∂

∂βj
F (β̄;Qp) = β̄−1

j · F (β̄;Qp)−R(β̄;Qp),

where the remainder term R(β̄;Qp) satisfies

(198) 0 ≤ R(β̄;Qp) ≤ π · (8M)|S|+1 · f (|S|+1)(0) ·
∏
k∈S

β̄k.

Substitute equations (196) and (198) into equation (197). This gives

(199)
∂

∂βj
F (β̄;Qp) ≥

∏
i∈S,i6=j

β̄i ·
(
c′ − C · β̄j

)
.

where c′ = f |S|(2Mb)

f |S|(0)
·F (1S ;P0) > 0 and C = π ·(8M)|S|+1 ·f (|S|+1)(0) >

0 are constants that depend only on f,M, b,P0, S, t. Recall β̄i = t/p
for all i ∈ S. Hence, equation (199) implies that for all large enough p:

∂

∂βj
F (β̄;Qp) ≥ c̄ · p−(|S|−1)

where c̄ = 1
2c
′ · t|S| = 1

2
f |S|(2Mb)

f |S|(0)
· F (1S ;P0) · t|S| > 0. Again, c̄ depends

only on f,M, b,P0, S, t. This proves the second line of equation (9).

Proof of Part 2. Fix l ∈ N. W.L.O.G we assume l ≥ 2. We construct the
distribution P0 as follows.

1. First, we set the marginal distribution of Y to be P0(Y = ±1) = 1
2 .

2. Next, we set the conditional distribution ofXS given Y . More precisely,
we let XS | Y = 1 ∼ P+1 and XS | Y = −1 ∼ P−1 where P+ and P−
are any two distinct distributions supported on [−M,M ]|S| that satisfy

• For any strict subset A ( S, the distribution of XA under P+1 is
the same as the distribution of XA under P−1.

• P+1 and P−1 have the same moments up to 2l-th order, i.e., for
any αS ∈ N|S| with

∑
i∈S αi ≤ 2l, we have

E+1

[∏
i∈S

Xαi
i

]
= E−1

[∏
i∈S

Xαi
i

]
.
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The existence of such distributions P+1,P−1 is proven in Lemma O.5.

By construction, it is easy to see that P0 exhibits a pure interaction: XA ⊥ Y
for all strict subset A ( S under P0. Fix this P0. Pick any sequence {Qp}p∈N
where Qp ∈ Q(p,M, S,P0). We show that when q = 2, the objective function
F (β;Qp) satisfies the following property:

• There exists a constant C1 > 0 depending only on f,M, b, t, l such that

(200) F (β̄;Qp, f, 2) ≤ C1 · p−l for all p ∈ N.

• There exists a constant C2 > 0 depending only on f,M, b, t, l such that

(201)
∂

∂βj
F (β̄;Qp, f, 2) ≤ C2 · p−l for all j ∈ S, p ∈ N.

The proof of the statements (200) and (201) are simlar. For space consider-
ations, we only detail the proof of equation (200) below.

The key idea to the proof is to perform a careful Taylor expansion. For
notational simplicity, we denote Zβ̄(X) = ‖X −X ′‖22,β . By definition,

F (β̄;Qp, f, 2) = EB−W
[
f
(
Zβ̄(X)

)]
(202)

Clearly we can expand Zβ̄(X) = Zβ̄(XS) + Zβ̄(XSc) where

Zβ̄(XS) =
∥∥XS −X ′S

∥∥2

2,β̄S
and Zβ̄(XSc) =

∥∥XSc −X ′Sc
∥∥2

2,β̄Sc
.

Recall the following version of Taylor’s intermediate theorem. For any smooth
function g ∈ C∞[0,∞), any scalars c ∈ R, x ∈ R+ and any l ∈ N,∣∣∣∣∣g(c+ x)−

∑
k<l

g(k)(c)

k!
xk

∣∣∣∣∣ ≤ 1

l!
· sup
ξ∈[c,c+x]

|g(l)(ξ)| · xl.

By specifying g ≡ f , c = Zβ̄(XS) and x = Zβ̄(XSc), and using the fact that
supx∈R |f (l)(x)| = |f (l)(0)| (since f ′ is completely monotone), we get

(203)
∣∣∣f(Zβ̄(X))−Hβ̄(X)

∣∣∣ ≤ Rβ̄(X).

In above, Hβ̄(X) and Rβ̄(X) are defined by

Hβ̄(X) =
∑
k<l

1

k!
· f (k)(Zβ̄(XSc)) · Zβ̄(XS)k

Rβ̄(X) =
1

l!
· |f (l)(0)| · |Zβ̄(XS)|l
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Using equations (202), (203) and triangle inequality, we immediately obtain

(204)
∣∣∣∣F (β̄;Qp, f, 2)− EB−W

[
Hβ̄(X)

] ∣∣∣∣ ≤ EB
[
Rβ̄(X)

]
+ EW

[
Rβ̄(X)

]
.

Here comes the two crucial observations.

• Under the distribution Qp, we have that

(205) EB−W
[
Hβ̄(X)

]
= 0.

Indeed, as (XS , Y ) ⊥ XSc since S is the signal set, we obtain

(206) EB−W
[
Hβ̄(X)

]
=

1

k!
· E
[
f (k)(Zβ̄(XSc))

]
· EB−W

[
Zβ̄(XS)k

]
Now that Zβ̄(XS)k is a polynomial of XS of order at most 2k ≤ 2l.
Moreover, by construction of P0, the conditional distribution of XS

given Y = 1 and of XS given Y = −1 have the same moments up to
order 2l. As a result, this shows that for all k ≤ l,

(207) EB−W
[
Zβ̄(XS)k

]
= 0.

Now equations (206) and equation (207) yield the desired (205).
• Under the distribution Qp, we have the following bound on the RHS

of equation (204): for the constant C = 2
l! · |f

(l)(0)| · (2|S|Mt)l,

(208) EB
[
Rβ̄(X)

]
+ EW

[
Rβ̄(X)

]
≤ C · p−l.

By construction, ‖X‖∞ ≤M . Thus we have almost surely

0 ≤ Zβ̄(XS) =
t

p

∥∥XS −X ′S
∥∥2

2
≤ 2M |S| · t

p
.

Recall the definition Rβ̄(X) = |f (l)(0)|
l! · |Zβ̄(XS)|l. This proves that we

have almost surely

0 ≤ Rβ̄(X) ≤ 1

l!
· |f (l)(0)| · (2|S|Mt)l · p−l.

This desired equation (208) now thus follows.

Recall equation (204). The previous observations leads to the bound∣∣F (β̄;Qp, f, 2)
∣∣ ≤ C · p−l

for the constant C = 2
l! ·|f

(l)(0)|·(2|S|Mt)l that depends only f,M, b, |S|, t, l.
Hence, we have shown the desired statement at equation (200). As discussed
before, the proof of the statement at equation (201) is essentially the same,
and is thus omitted for space consideration.
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N.8. Proof of Proposition 12. We first prove Proposition 12 holds on
population (n =∞), and then prove this also holds in finite sample (n <∞)
using standard concentration and perturbation techniques.

N.8.1. Population case: n =∞. We prove via induction that the follow-
ing inequality holds for all m ∈ N

(209) min
i∈S

β
(m)
i ≥ ζ and max

i∈Sc

(
β

(m)
i − β(m−1)

i

)
≤ 0.

Clearly, this implies Proposition 12 as desired.
The base case m = 0 trivially holds since β(0) = b

p1.
Suppose the induction hypothesis, i.e., equation (209) holds for m. Below

we prove that it also holds for m+ 1. We proceed our proof in two steps.

• In the first step, we prove that

(210) max
i∈Sc

(
β

(m+1)
i − β(m)

i

)
≤ 0.

The key here is Proposition 3, which shows the gradient with respect
to noise variables is non-positive, i.e., for β ∈ B and i ∈ Sc,

(211)
∂

∂βi
`(β;λ,Q) ≤ 0.

Hence, we derive for i ∈ Sc,

(212) β
(m+1/2)
i = β

(m)
i + α · ∂

∂βi
`(β;λ,Q) ≤ β(m)

i .

To pass the bound from the intermediate β(m+1/2) to the final iterate
β(m+1), we use the projection Lemma O.2. According to Lemma O.2,
there exists a nonnegative scalar γ(m) ≥ 0 such that for i ∈ Sc

β
(m+1)
i = ΠB

(
β

(m+1/2)
i

)
=
(
β

(m+1/2)
i − γ(m)

)
+
.

Using this identity, we obtain immediately that: for i ∈ Sc,

β
(m+1)
i ≤

(
β

(m+1/2)
i

)
+
≤ β(m)

i .

This gives equation (210) as desired. We finish the first step.
• In the second step, we prove that

(213) min
i∈S

β
(m+1)
i ≥ ζ.

Fix i ∈ S. We need to prove β(m+1)
i ≥ ζ. Below we divide our discussion

into two cases based on the size of β(m)
i . Let ∆ ≡ 1

2s .
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(a) First, we consider the scenario where β(m)
i ≥ ζ(1 + ∆). The key

observation is that the gradient ∇`(β;λ;w) is bounded in `∞
norm. Indeed, using ‖X‖∞ ≤M and supx |f ′(x)| ≤ |f ′(0)|,

‖∇`(β;λ;w)‖∞
=
∥∥∥EwB−W [|Xi −X ′i| · f ′(

∥∥X −X ′∥∥
β,1

)]
∥∥∥
∞
≤M |f ′(0)|

(214)

where M = 2M . After all, we immediately obtain∥∥β(m+1/2) − β(m)
∥∥
∞ = α

∥∥∇`(β;λ;w)
∥∥
∞ ≤ αM |f

′(0)|.(215)

Now we pass this bound from β(m+1/2) to β(m+1). To do so, we
use the projection Lemma O.3. By Lemma O.3, we have

(216)
∥∥β(m+1) − β(m)

∥∥
∞ ≤ 2 ·

∥∥β(m+1/2) − β(m)
∥∥
∞.

With equations (215) and (216), we use triangle inequality to get

β
(m+1)
i ≥ β(m)

i −
∥∥β(m+1) − β(m)

∥∥
∞ ≥ β

(m)
i − 2αM |f ′(0)|.

Note β(m)
i ≥ ζ(1 + ∆) by assumption. Hence, for C large enough

such that 2αM |f ′(0)| ≤ ζ∆ (recall α ≤ 1
C(p·s)), we have

β
(m+1)
i ≥ ζ.

This proves that equation (213) holds in the first scenario.

(b) Next, we consider the scenario where ζ(1 + ∆) ≥ β
(m)
i ≥ ζ. The

key here is the gradient ∂
∂βi
`(β;λ;w) is strictly positive which is

due to i ∈ S. To see this, Lemma I.2 first shows for i ∈ S,
∂

∂βi
`(β;λ,Q) =

∂

∂βi
F (β;Q)− λ

=
1

βi
· F (β;Q)−Ri,∞(β;Q)− λ,

(217)

where the remainder term Ri,∞(β;Q) satisfies

(218) 0 ≤ Ri,∞(β;Q) ≤ C ·
∏
k∈S

βk.

In above, the constant C ≤ |fs+1(0)|·(8πM)s+1. Further, Lemma I.1
and Lemma I.3 show that for the constant c = b−s · f

s(2Mb)
fs(0) > 0,

(219) F (β;Q) ≥ c · F (b1S ;Q) ·
∏
k∈S

βk.
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From equations (217)—(219), we obtain for β ∈ B and i ∈ S,

(220)
∂

∂βi
`(β;λ,Q) ≥

(
c · F (b1S ;Q)− C · βi

)
·
∏

k∈S,k 6=i
βk − λ.

Now we apply the bound (220) to β = β(m). Notice the below two
observations. First, by induction hypothesis, we have∏

k∈S,k 6=i
β

(m)
k ≥ ζs−1

Next, because we assume β(m)
i ≤ ζ(1 + ∆) ≤ 2 · ζ, we have when

SIGNAL(S) ≥ C · 1
ps for sufficiently large C, the following bound

c · F (b1S ;Q) ≥ 2C · β(m)
i .

Now, applying equation (220) to β = β(m), we obtain for i ∈ S

(221)
∂

∂βi
`(β(m);λ,Q) ≥ 1

2
· c · F (b1S ;Q) · ζs−1 − λ > 0

where the last inequality is due to our assumption that SIGNAL(S) >
2λ. As a consequence of equation (221), we obtain

β
(m+1/2)
i = β

(m)
i + α · ∂

∂βi
`(β(m);λ,Q) ≥ β(m)

i ≥ ζ.

Now we pass the result from β
(m+1/2)
i to β(m+1)

i . To do so, we use
the projection Lemma O.2. Indeed, According to Lemma O.2,

β
(m+1)
i = ΠB

(
β

(m+1/2)
i

)
=
(
β

(m+1/2)
i − γ(m)

)
+
.

where the scalar γ(m) ≥ 0 is defined by

(222) γ(m) = inf
{
γ ≥ 0 :

∑
i

(
β

(m+1/2)
i − γ

)
+
≤ b
}
.

We will prove the below technical inequality (223) in Section N.8.3:

(223) γ(m) ≤ α · ∂
∂βi

`(β(m);λ,Q).

As a consequence of inequality (223), we obtain

(224) β
(m+1)
i =

(
β

(m+1/2)
i − γ(m)

)
+
≥ β(m)

i ≥ ζ.

This proves equation (213), as desired.
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N.8.2. Finite Sample case: n < ∞. The proof is effectively the same as
in the population case n =∞. The only essential difference is that in finite
case (n <∞), we are using the empirical gradient ∇`(β;λ,Qn) rather than
the population gradient ∇`(β;λ,Q).

The way to resolve this is to give a high probability upper bound on
the difference between the empirical and population gradient. In fact, from
Corollary J.1, we know for some constant C > 0 depending only on b,M, f ,
we have for all t > 0, with probability at least 1− p−t2 − e−n%2/32

sup
j∈[p]

sup
β∈B

∣∣∣∣ ∂∂βj `(β;λ,Qn)− ∂

∂βj
`(β;λ,Q)

∣∣∣∣ ≤ C ·
√

log p

n
· (1 + t).

Now, for any t > 0, define λ̄(t) by

λ̄(t) = λ+ C ·
√

log p

n
· (1 + t).

By replacing λ by λ̄(t), and ∇`(β;λ,Q) by ∇`(β;λ,Qn) in the proof of the
population (n =∞) and by copying the rest verbatim, we obtain a proof for
the finite case n <∞. The details are omitted for space considerations.

N.8.3. Deferred proof of Inequality (223). Below we show the deferred
technical inequality (223). For notational simplicity, we denote

∆(m) = α · ∇`(β(m);λ,Q)

Thus β(m+1/2) = β(m) + ∆(m). Suppose on the contrary that equation (223)
fails, i.e., γ(m) > ∆

(m)
i > 0. By definition of γ(m) (cf. equation (222)), we get

(225)
∑
k

(
β

(m)
k + ∆

(m)
k −∆

(m)
i

)
+

=
∑
k

(
β

(m+1/2)
k −∆

(m)
i

)
+
> b.

Note ∆
(m)
k ≤ 0 for k ∈ Sc by equation (211) and β

(m)
k ≤ b

p for k ∈ Sc by

equation (212). Since b ≥
∑

k β
(m)
k , equation (225) gives

(226)
∑
k∈S

(
β

(m)
k + ∆

(m)
k −∆

(m)
i

)
+
> max

{∑
k∈S

β
(m)
k ,

bs

p

}
.

Now
∥∥∆(m)

∥∥
∞ ≤ 2αM |f ′(0)| ≤ ζ∆ ≤ ζ/2 by equation (214). Hence, by

induction hypothesis, we have for k ∈ S, β(m)
k + ∆

(m)
k − ∆

(m)
i ≥ 0. Thus,

equation (226) implies

(227)
1

|S|
∑
k∈S

(
∆

(m)
i −∆

(m)
k

)
< 0.
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Using equation (217), equation (227) is equivalent to

(228)
1

|S|
∑
k∈S

(
1

β
(m)
i

− 1

β
(m)
k

)
·F (β(m);Q)− 1

|S|
∑
k∈S

Rk,∞(β(m);Q)−λ < 0.

Below we show equation (228) can’t happen, which leads to a contradiction.
Thus, the desired technical inequality (223) holds.

To do so, we bound each term on the LHS of equation (228). First, by
equation (218), the second term satisfies

(229)
1

|S|
∑
k∈S

Rk,∞(β(m);Q) ≤ C ·
∏
k∈S

β
(m)
k .

To bound the first term, we note first from equation (219) that

(230) F (β
(m)
k ;Q) ≥ c · F (b1S ;Q) ·

∏
k∈S

β
(m)
k > 0.

Next, we prove the technical inequality

(231)
1

β
(m)
i

≥ 2 · 1

|S|
·
∑
k∈S

1

β
(m)
k

.

This is true because of the following points

• mink∈S β
(m)
k ≥ ζ by induction hypothesis

• β
(m)
i ≤ ζ(1 + ∆) by assumption

•
∑

k∈S β
(m)
k ≥ b

2p · s = 4ζs. This is true since equation (226), the fact

that ∆
(m)
i ≥ 0 and that

∑
k∈S |∆

(m)
k | ≤ ζ∆s ≤ b

2p · s.

Now we are ready to use equations (229), (230) and (231) to give a lower
bound on the LHS of (228). Formally, denote the LHS term of equation (228)
by Γ. The previous results imply

(232) Γ ≥
(1

2
· c · F (b1S ;Q)− C · β(m)

i

)
·
∏

k∈S,k 6=i
β

(m)
k − λ.

Note 1
2 · c · F (b1S ;Q) − C · β(m)

i ≥ 1
4 · c · F (b1S ;Q) when the constant C

is large enough (recall β(m)
i ≤ 2 · ζ and SIGNAL(S) ≥ C · 1

ps ). Moreover,

β
(m)
k ≥ ζ for all k ∈ S. Therefore, we obtain

Γ ≥ 1

4
· c · F (b1S ;Q) · ζs−1 − λ > 0

where the last inequality is due to SIGNAL(S) > 2λ. This contradicts equa-
tion (228). The proof is now complete.
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APPENDIX O: SUPPORTING LEMMA

O.1. Concentration Inequality for U-statistics. We state the Ho-
effding’s and Bernstein’s inequality for U-statistics [5, 1].

Lemma O.1. Let X1, X2, . . . , Xn be i.i.d random variables taking values
in R. Let h be a measurable function of m variables. The U -statistics of order
m and kernel h is defined by

Um(h) =
(n−m)!

n!

∑
(i1,i2,...,im)∈Imn

h (Xi1 , Xi2 , . . . , Xim) .

where
Imn = {(i1, i2, . . . , im) : 1 ≤ ij ≤ n, ij 6= ik if j 6= k} .

Assume for some M,σ > 0, we have |h(X1, X2, . . . , Xm)| ≤M almost surely
and E[h2(X1, X2, . . . , Xm)] ≤ σ2. Then,

1. (Hoeffding’s inequality) We have for any t > 0,

P (|Um(h)− EUm(h)| ≥ t) ≤ 2 exp

(
− nt2

mM2

)
.

2. (Bernstein’s inequality) We have for any t > 0,

P (|Um(h)− EUm(h)| ≥ t) ≤ 2 exp

(
− nt2

2m(Mt+ E[h2])

)
.

O.2. Projection onto `1 ball. Fix b > 0. As usual, we denote the
polytope

B = min
{
β ∈ Rp+ : 1Tβ ≤ b

}
.

Lemma O.2 gives a characterization of the projection onto B.

Lemma O.2. Let β ∈ Rp. Its projection β̃ = ΠB(β) satisfies

β̃ = (β − γ)+

where γ ≥ 0 is defined by

(233) γ = inf{γ ≥ 0 :
∑
i∈[p]

(βi − γ)+ ≤ b}.
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Proof. By definition, β̃ = ΠB(β) is the solution of the convex optimiza-
tion problem:

minimize
x

1

2
‖x− β‖22

subject to x ≥ 0,1Tx ≤ b.

The KKT condition of the optimization problem is, for some µ ∈ Rp, γ ∈ R,

β̃ − β + γ1− µ = 0.

γ(1T β̃ − b) = 0, µT β̃ = 0

β̃ ≥ 0,1T β̃ ≤ b.
γ ≥ 0, µ ≥ 0.

(234)

Thus β̃ = β − γ1 + µ ≥ 0, µ ≥ 0, and β̃Tµ = 0. From this, we derive

β̃ = (β − γ1)+.

To determine the value of γ, we note, γ ≥ 0, 1T β̃ ≤ b, γ(1T β̃− b) = 0 where
β̃ = (β−γ1)+. Hence, γ must be the smallest nonnegative number such that
1T (β − γ1)+ ≤ b. This proves the desired Lemma O.2.

Lemma O.3. Let β̄ ∈ B and β ∈ Rp, we have∥∥ΠB(β)− β̄
∥∥
∞ ≤ 2 ·

∥∥β − β̄∥∥∞.
Proof. Let β̃ = ΠB(β). From Lemma O.2, we know that β̃ = (β − γ)+

for the γ ≥ 0 which is defined by the equation (233). This implies

(235) ‖β̃ − β̄‖∞ ≤
∥∥β − β̄∥∥∞ + γ.

Below we show γ ≤ γ0 :=
∥∥β − β̄∥∥∞. Indeed, (βi − γ0)+ ≤ β̄i by triangle

inequality. Thus we have∑
i

(βi − γ0)+ ≤
∑
i

β̄i ≤ b.

According to the definition of γ, this implies γ ≤ γ0 =
∥∥β − β̄∥∥∞. Substitut-

ing it into equation (235) yields the desired Lemma O.3.
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O.3. Basic Properties on Projected Gradient Ascent. The fol-
lowing result is standard in nonlinear optimization [2, Prop 2.3.2].

Lemma O.4. Consider the (non-convex) optimization problem

maximize J(β)

subject to β ∈ C.

Assume the following assumptions on J and C:

• The gradient x 7→ ∇J(x) is L-Lipschitz on C, i.e.,∥∥∇J(β)−∇J(β′)
∥∥

2
≤ L

∥∥β − β′∥∥
2

for any β, β′ ∈ C.

• The constraint set C is convex.

Consider the projected gradient ascent algorithm with stepsize α:

β(k+1) = ΠC

(
β(k) + α∇J(β(k))

)
.

Let the stepsize α ≤ 1/L. Then we have

1. The mapping k 7→ J(β(k)) is increasing. In particular, we have,

J(β(k))) ≥ J(β(0)) for all k ∈ N.

2. Any accumulation point β∞ of {β(k)}k∈N is a stationary point, i.e.,

〈∇J(β∞), β′ − β∞〉 ≤ 0 for any β′ ∈ C.

O.4. Construction of two distinct distributions with matching
moments. Lemma O.5 constructs two distinct multivariate distributions of
supported on the same compact interval [−1, 1]m that share the same mixed
moments (up to l) and same marginal distribution for any strict subset of
variables. The proof adapts a classical argument (see e.g., [7]).

Lemma O.5. Fix m, l ∈ N. Let X = (X1, . . . , Xm) ∈ Rm. There exist
two distinct probability distributions P+,P− supported on [−1, 1]m such that

1. For any strict subset A ( [m], the distribution of XA under P+ is the
same as the distribution of XA under P−.

2. For any α = (α1, . . . αm) ∈ Nm with
∑m

i=1 αi ≤ l, we have

E+

[
m∏
i=1

Xαi
i

]
= E−

[
m∏
i=1

Xαi
i

]
.
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Proof. The proof of Lemma O.5 is based on the Hahn-Banach Theorem
and the Riesz representation theorem. Below for simplicity, we only present
the proof for the case where m = 2. The argument for m > 2 is essentially
the same as the argument for m = 2 presented below.

Let m = 2. Consider the space D = C([−1, 1]2) of continuous real-valued
functions on the box [−1, 1]2 with uniform norm ‖·‖∞. Let us denote

fα1,α2(X) = Xα1
1 Xα2

2

for any α = (α1, α2) ∈ N2. We denote P ⊆ D to be the linear subspace
spanned by {fα}α∈A where

A = {α ∈ N2 : α1α2 = 0} ∪ {α ∈ N2 : α1 + α2 ≤ l}.

and denote F to be the linear subspace spanned by f̄ ≡ fl+1,l+1 and P. Let
T be the following linear functional defined on F : we define T (cf̄ + f) = c
for any f ∈ P and c ∈ R. The BLT theorem in functional analysis says that
T has a continuous extension on F , which is the closure of F under the ‖·‖∞
norm. Clearly, the norm of the linear functional T on F is positive (and is
in fact equal to 1), and T vanishes on the closed subspace P, the closure of
P under ‖·‖∞.

Now by the Hahn-Banach theorem, T has a continuous extension to the
whole space D without changing its norm. For simplicity, we also call this
extension T . It then follows from the Riesz representation theorem that for
some (non-degenerate) Borel signed measure τ , we have for each g ∈ D,

T (g) =

∫∫
[−1,1]2

g(x)τ(dx).

Now the Hahn-Jordan decomposition shows that there exist two positive
measures τ+ and τ− such that τ = τ+ − τ−. Define P+ and P− to be the
probability measures normalized from τ+ and τ− respectively. The fact that
T (f) = 0 for any f ∈ P immediately implies for any α ∈ A, we have∫∫

xα1
1 xα2

2 P+(dx) =

∫∫
xα1

1 xα2
2 P−(dx),

and therefore for any α ∈ A, we have

E+ [Xα1
1 Xα2

2 ] = E− [Xα1
1 Xα2

2 ] .

As both P+ and P− are defined on compact domain, the fact that X1 (and
X2) has the same moments under P+ and P− imply that X1 (and X2) has
the same marginal distribution under P+ and P−. In addition, it also shows
that the vector X = (X1, X2) has the same mixed moments up to l. Finally,
the fact that T 6= 0 implies that P+ and P− must be distinct.
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O.5. Covariance inequality. The covariance of two monotone func-
tions of X is always positive.

Lemma O.6. For any function g1, g2 that is monotonically increasing (or
decreasing), and any non-negative measure µ̃ with |µ̃| <∞, we have∫

g1(t)g2(t)µ̃(dt) ≥ 1

|µ̃|

∫
g1(t)µ̃(dt)

∫
g2(t)µ̃(dt).
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